首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2715篇
  免费   237篇
  国内免费   1篇
  2953篇
  2024年   3篇
  2023年   22篇
  2022年   40篇
  2021年   83篇
  2020年   60篇
  2019年   51篇
  2018年   87篇
  2017年   64篇
  2016年   139篇
  2015年   160篇
  2014年   168篇
  2013年   221篇
  2012年   246篇
  2011年   225篇
  2010年   140篇
  2009年   110篇
  2008年   171篇
  2007年   167篇
  2006年   128篇
  2005年   129篇
  2004年   109篇
  2003年   103篇
  2002年   79篇
  2001年   18篇
  2000年   13篇
  1999年   20篇
  1998年   16篇
  1997年   16篇
  1996年   16篇
  1995年   15篇
  1994年   7篇
  1993年   10篇
  1992年   14篇
  1991年   6篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   5篇
  1986年   9篇
  1985年   5篇
  1984年   5篇
  1982年   4篇
  1979年   3篇
  1974年   2篇
  1973年   5篇
  1970年   4篇
  1962年   2篇
  1958年   3篇
  1944年   3篇
  1942年   2篇
排序方式: 共有2953条查询结果,搜索用时 11 毫秒
21.
Applied Microbiology and Biotechnology - White-rot fungi are renowned for their remarkable potential to degrade a wide range of organic pollutants. They are applicable in standard bioreactors...  相似文献   
22.
Summary

Invasion of the riparian zone by alien vegetation is recognised as a serious problem in many areas of South Africa. Vegetation is a dynamic component of river channels. It is an important control variable affecting channel form whereas the flow and sediment regime influences vegetation growth. Wherever alien vegetation invades the riparian zone it can be expected that there will be some impact on the physical structure of the riparian habitat. This paper reviews the effect of riparian vegetation on channel processes and channel form and discusses the implications of the invasion of riparian zones by alien vegetation. Woody species in particular are seen as having a significant potential for inducing channel modification, whilst their removal could lead to significant channel instability and mobilisation of sediment. The need for further research into the impact of alien vegetation on the geomorphology of South African river channels is stressed.  相似文献   
23.
An emerging DNA sequencing technique uses protein or solid-state pores to analyze individual strands as they are driven in single-file order past a nanoscale sensor. However, uncontrolled electrophoresis of DNA through these nanopores is too fast for accurate base reads. Here, we describe forward and reverse ratcheting of DNA templates through the α-hemolysin nanopore controlled by phi29 DNA polymerase without the need for active voltage control. DNA strands were ratcheted through the pore at median rates of 2.5-40 nucleotides per second and were examined at one nucleotide spatial precision in real time. Up to 500 molecules were processed at ~130 molecules per hour through one pore. The probability of a registry error (an insertion or deletion) at individual positions during one pass along the template strand ranged from 10% to 24.5% without optimization. This strategy facilitates multiple reads of individual strands and is transferable to other nanopore devices for implementation of DNA sequence analysis.  相似文献   
24.
25.
Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.  相似文献   
26.
27.
DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA) sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1) an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies), incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2) an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031) and waist-hip ratio (p-value = 2.4×10-5), but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.  相似文献   
28.
Numerous studies have revealed important functions for sialylation in both prokaryotes and higher animals. However, the genetic and biochemical potential for sialylation in Drosophila has only been confirmed recently. Recent studies suggest significant similarities between the sialylation pathways of vertebrates and insects and provide evidence for their common evolutionary origin. These new data support the hypothesis that sialylation in insects is a specialized and developmentally regulated process which likely plays a prominent role in the nervous system. Yet several key issues remain to be addressed in Drosophila, including the initiation of sialic acid de novo biosynthesis and understanding the structure and function of sialylated glycoconjugates. This review discusses our current knowledge of the Drosophila sialylation pathway, as compared to the pathway in bacteria and vertebrates. We arrive at the conclusion that Drosophila is emerging as a useful model organism that is poised to shed new light on the function of sialylation not only in protostomes, but also in a larger evolutionary context. K. Koles and E. Repnikova contributed equally to this work.  相似文献   
29.
We examined range‐wide mitochondrial phylogeographical structure in the riverine freshwater turtle Chelodina expansa to determine whether this species exhibits deep genetic divergence between coastal and inland hydrological provinces, as seen in co‐distributed freshwater taxa. We sequenced two mitochondrial loci, genealogical relationships were assessed using a network approach, and relationships among biogeographical regions were tested using analyses of molecular variance. Population history was evaluated using neutrality tests, indices of demographic expansion, and mismatch analyses. Twenty‐one haplotypes were recovered across two mitochondrial haplogroups separated by approximately 4% nucleotide divergence. The haplogroups have discrete geographical boundaries but only partially support a hypothesis of deep divergence between coastal and inland bioregions. The first haplogroup comprises populations from the inland Murray‐Darling Basin and from coastal catchments south of the Mary River in south‐east Queensland. The second haplogroup comprises populations from coastal catchments north of the Mary River. Cryptic phylogeographical barriers separating adjacent coastal populations are congruent with those demonstrated for other freshwater taxa and may result from the combined influences of the Conondale Range and alluvial deposits at the mouth of the Mary River. The findings of the present study demonstrate that freshwater taxa commonly display genetic differentiation within a biogeographical region where no boundaries have been recognized, highlighting the need to uncover cryptic microbiogeographical regions to aid conservation of freshwater biota. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 789–805.  相似文献   
30.
Margination and activation of monocytes within the pulmonary microcirculation contribute substantially to the development of acute lung injury in mice. The enhanced LPS-induced TNF expression exhibited by Gr-1(high) compared with Gr-1(low) monocytes within the lung microvasculature suggests differential roles for these subsets. We investigated the mechanisms responsible for such heterogeneity of lung-marginated monocyte proinflammatory response using a combined in vitro and in vivo approach. The monocyte subset inflammatory response was studied in vitro in mouse peripheral blood mononuclear cell-lung endothelial cell coculture and in vivo in a two-hit model of intravenous LPS-induced monocyte margination and lung inflammation in mice, by flow cytometry-based quantification of proinflammatory genes and intracellular phospho-kinases. With LPS stimulation in vitro, TNF expression was consistently higher in Gr-1(high) than Gr-1(low) monocytes, markedly enhanced by coculture with endothelial cells, and abrogated by p38 MAPK inhibitors. Expression of IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) was only detectable under coculture conditions, was substantially higher in Gr-1(high) monocytes, and was attenuated by p38 inhibition. Consistent with these differential responses, phosphorylation of p38 and its substrate MAPK-activated protein kinase 2 (MK2) was significantly higher in the Gr-1(high) subset. In vivo, p38 inhibitor treatment significantly attenuated LPS-induced TNF expression in "lung-marginated" Gr-1(high) monocytes. LPS-induced p38/MK2 phosphorylation was higher in lung-marginated Gr-1(high) than Gr-1(low) monocytes and neutrophils, mirroring TNF expression. These results indicate that the p38/MK2 pathway is a critical determinant of elevated Gr-1(high) subset responsiveness within the lung microvasculature, producing a coordinated proinflammatory response that places Gr-1(high) monocytes as key orchestrators of pulmonary microvascular inflammation and injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号