首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2721篇
  免费   235篇
  国内免费   1篇
  2957篇
  2024年   3篇
  2023年   22篇
  2022年   40篇
  2021年   83篇
  2020年   60篇
  2019年   51篇
  2018年   87篇
  2017年   64篇
  2016年   140篇
  2015年   160篇
  2014年   168篇
  2013年   222篇
  2012年   246篇
  2011年   225篇
  2010年   140篇
  2009年   110篇
  2008年   171篇
  2007年   167篇
  2006年   128篇
  2005年   129篇
  2004年   109篇
  2003年   103篇
  2002年   79篇
  2001年   18篇
  2000年   13篇
  1999年   21篇
  1998年   16篇
  1997年   16篇
  1996年   16篇
  1995年   15篇
  1994年   7篇
  1993年   10篇
  1992年   15篇
  1991年   6篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   5篇
  1986年   9篇
  1985年   5篇
  1984年   5篇
  1982年   4篇
  1979年   3篇
  1974年   2篇
  1973年   5篇
  1970年   4篇
  1962年   2篇
  1958年   3篇
  1944年   3篇
  1942年   2篇
排序方式: 共有2957条查询结果,搜索用时 31 毫秒
51.
The effect of actinomycin D on HeLa cells was studied by live fluorescence and transmission-through-dye microscopy—a recently developed technique that permits volume measurements in live cells. In particular, it is well suited for the observation and quantification of the apoptotic volume decrease (AVD), which is widely viewed as an essential feature of apoptosis. The main results from our study are as follows. (1) Apoptosis caused in HeLa cells by actinomycin D proceeds in two morphologically distinct stages: the early stage is characterized by extensive blebbing, and the late stage by a more compact shape. The loss of mitochondrial membrane potential occurs at about the same time as blebbing, and chromatin condensation follows 30–90 min later. Caspase-3 and 7 become activated during the late stage. (2) Because blebbing occurs before activation of caspase-3, it has to be initiated by a different mechanism. Although blebbing is one of the earliest observable changes, it can be selectively inhibited without affecting other apoptotic reactions. (3) The majority of cells experience a temporary volume increase after the appearance of blebs. Eventually, AVD takes over and the cells shrink by approximately 40 % of their initial volume; the volume loss becomes noticeable at the end of the blebbing phase and continues through the late stage. Sometimes, at the end of long incubations, shrinkage gives way to swelling, possibly indicating secondary necrosis. (4) Both early and late apoptosis are accompanied by intracellular accumulation of Na+, while low-sodium medium prevents apoptosis. Except for a partial protective effect of quinine, all of the tested blockers of Na+, K+ and Cl? channels failed to prevent apoptosis or AVD.  相似文献   
52.
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.  相似文献   
53.
The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to -actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.  相似文献   
54.
BackgroundLarge variability in tests and differences in scoring systems used to study central coherence in eating disorders may lead to different interpretations, inconsistent findings and between study discrepancies. This study aimed to address inconsistencies by collating data from several studies from the same research group that used the Rey Osterrieth Complex Figure Test (Rey Figure) in order to produce norms to provide benchmark data for future studies.MethodData was collated from 984 participants in total. Anorexia Nervosa, Bulimia Nervosa, recovered Anorexia Nervosa, unaffected family members and healthy controls were compared using the Rey Figure.ResultsPoor global processing was observed across all current eating disorder sub-groups and in unaffected relatives. There was no difference in performance between recovered AN and HC groups.ConclusionsThis is the largest dataset reported in the literature and supports previous studies implicating poor global processing across eating disorders using the Rey Figure. It provides robust normative data useful for future studies.  相似文献   
55.
The eastern U.S. receives elevated rates of Ndeposition compared to preindustrial times, yetrelatively little of this N is exported indrainage waters. Net uptake of N into forestbiomass and soils could account for asubstantial portion of the difference between Ndeposition and solution exports. We quantifiedforest N sinks in biomass accumulation andharvest export for 16 large river basins in theeastern U.S. with two separate approaches: (1)using growth data from the USDA ForestService's Forest Inventory and Analysis (FIA)program, and (2) using a model of forestnitrogen cycling (PnET-CN) linked to FIAinformation on forest age-class structure. Themodel was also used to quantify N sinks in soiland dead wood, and nitrate losses below therooting zone. Both methods agreed that netgrowth rates were highest in the relativelyyoung forests on the Schuylkill watershed, andlowest in the cool forests of northern Maine. Across the 16 watersheds, wood export removedan average of 2.7 kg N ha–1 yr–1(range: 1–5 kg N ha–1 yr–1), andstanding stocks increased by 4.0 kg N ha–1yr–1 (–3 to 8 kg N ha–1 yr–1). Together, these sinks for N in woody biomassamounted to a mean of 6.7 kg N ha–1yr–1 (2–9 kg N ha–1 yr–1), or73% (15–115%) of atmospheric N deposition. Modeled rates of net N sinks in dead wood andsoil were small; soils were only a significantnet sink for N during simulations ofreforestation of degraded agricultural sites. Predicted losses of nitrate depended on thecombined effects of N deposition, and bothshort- and long-term effects of disturbance. Linking the model with forest inventoryinformation on age-class structure provided auseful step toward incorporating realisticpatterns of forest disturbance status acrossthe landscape.  相似文献   
56.

Purpose

Standard treatment for glioblastoma (GBM) is surgery followed by radiation (RT) and temozolomide (TMZ). While there is variability in survival based on several established prognostic factors, the prognostic utility of other factors such as tumor size and location are not well established.

Experimental Design

The charts of ninety two patients with GBM treated with RT at the National Cancer Institute (NCI) between 1998 and 2012 were retrospectively reviewed. Most patients received RT with concurrent and adjuvant TMZ. Topographic locations were classified using preoperative imaging. Gross tumor volumes were contoured using treatment planning systems utilizing both pre-operative and post-operative MR imaging.

Results

At a median follow-up of 18.7 months, the median overall survival (OS) and progression-free survival (PFS) for all patients was 17.9 and 7.6 months. Patients with the smallest tumors had a median OS of 52.3 months compared to 16.3 months among patients with the largest tumors, P = 0.006. The patients who received bevacizumab after recurrence had a median OS of 23.3 months, compared to 16.3 months in patients who did not receive it, P = 0.0284. The median PFS and OS in patients with periventricular tumors was 5.7 and 17.5 months, versus 8.9 and 23.3 months in patients with non-periventricular tumors, P = 0.005.

Conclusions

Survival in our cohort was comparable to the outcome of the defining EORTC-NCIC trial establishing the use of RT+TMZ. This study also identifies several potential prognostic factors that may be useful in stratifying patients.  相似文献   
57.
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of cysteine and is essential for survival in the latent phase of tuberculosis infection. The reaction catalyzed by APR involves the nucleophilic attack by conserved Cys-249 on adenosine 5'-phosphosulfate, resulting in a covalent S-sulfocysteine intermediate that is reduced in subsequent steps by thioredoxin to yield the sulfite product. Cys-249 resides on a mobile active site lid at the C terminus, within a K(R/T)ECG(L/I)H motif. Owing to its strict conservation among sulfonucleotide reductases and its proximity to the active site cysteine, it has been suggested that His-252 plays a key role in APR catalysis, specifically as a general base to deprotonate Cys-249. Using site-directed mutagenesis, we have changed His-252 to an alanine residue and analyzed the effect of this mutation on the kinetic parameters, pH rate profile, and ionization of Cys-249 of APR. Interestingly, our data demonstrate that His-252 does not perturb the pK(a) of Cys-249 or play a direct role in rate-limiting chemical steps of the reaction. Rather, we show that His-252 enhances substrate affinity via interaction with the α-phosphate and the endocyclic ribose oxygen. These findings were further supported by isothermal titration calorimetry to provide a thermodynamic profile of ligand-protein interactions. From an applied standpoint, our study suggests that small-molecules targeting residues in the dynamic C-terminal segment, particularly His-252, may lead to inhibitors with improved binding affinity.  相似文献   
58.
Review of Florida Red Tide and Human Health Effects   总被引:1,自引:0,他引:1  
This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.  相似文献   
59.
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.  相似文献   
60.
The cytoskeletal protein talin binds to a short C-terminal sequence in phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma), activating the enzyme and promoting the local production of phosphatidylinositol 4,5 bisphosphate, which regulates focal adhesion dynamics as well as clathrin-mediated endocytosis in neuronal cells. Here we show by crystallographic, NMR, and calorimetric analysis that the phosphotyrosine binding (PTB)-like domain of talin engages the PIPKIgamma C terminus in a mode very similar to that of integrin binding. However, PIPKIgamma binds in the canonical PTB-peptide mode with an SPLH motif replacing the classic NPXY motif. The tighter packing of the SPLH motif against the hydrophobic core of talin may explain the stronger binding of PIPKIgamma. Two tyrosine residues flanking the SPLH motif (Tyr-644 and Tyr-649) have been implicated in the regulation of talin binding. We show that phosphorylation at Tyr-644, a Src phosphorylation site in vivo, has little effect on the binding mode or strength, which is consistent with modeling studies in which the phosphotyrosine makes surface-exposed salt bridges, and we suggest that its strong activating effect arises from the release of autoinhibitory restraints in the full-length PIPKIgamma. Modeling studies suggest that phosphorylation of Tyr-649 will likewise have little effect on talin binding, whereas phosphorylation of the SPLH serine is predicted to be strongly disruptive. Our data are consistent with the proposal that Src activity promotes a switch from integrin binding to PIPKIgamma binding that regulates focal adhesion turnover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号