首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84528篇
  免费   4848篇
  国内免费   11篇
  89387篇
  2023年   477篇
  2021年   1035篇
  2020年   925篇
  2019年   883篇
  2018年   2301篇
  2017年   2000篇
  2016年   2760篇
  2015年   3618篇
  2014年   3732篇
  2013年   4939篇
  2012年   5749篇
  2011年   5062篇
  2010年   3310篇
  2009年   2445篇
  2008年   4030篇
  2007年   3800篇
  2006年   3727篇
  2005年   3135篇
  2004年   3129篇
  2003年   2792篇
  2002年   2549篇
  2001年   2053篇
  2000年   1917篇
  1999年   1478篇
  1998年   663篇
  1997年   474篇
  1996年   533篇
  1992年   930篇
  1991年   850篇
  1990年   830篇
  1989年   907篇
  1988年   738篇
  1987年   758篇
  1986年   698篇
  1985年   765篇
  1984年   636篇
  1983年   553篇
  1979年   679篇
  1978年   499篇
  1977年   496篇
  1975年   598篇
  1974年   631篇
  1973年   620篇
  1972年   561篇
  1971年   503篇
  1970年   549篇
  1969年   618篇
  1968年   578篇
  1967年   481篇
  1966年   472篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The occurrence of several virulence traits (cytolysin, adhesins and hydrolytic enzymes) was investigated in a collection of 164 enterococci, including food and clinical isolates (from human and veterinary origin), as well as type and reference strains from 20 enterococcal species. Up to fifteen different cyl genotypes were found, as well as silent cyl genes. The occurrence of the cyl operon and haemolytic potential seems to be widespread in the genus. A significant association of this virulent trait with clinical isolates was found (p < 0.05). High levels of incidence were also observed for genes encoding surface adhesins (esp, efaA(fs), efaA(fm)), agg and gelE, irrespectively of species allocation and origin of strains. Although gelE behaves as silent in the majority of the strains, gelatinase activity predominates in clinical isolates, whereas lipase and DNase were mainly detected in food isolates pointing to their minor role as virulence determinants. No hyaluronidase activity was detected for all strains. Numerical hierarchic data analysis grouped the strains in three main clusters, two of them including a total of 50 strains with low number of virulence determinants (from 2 to 7) and the other with 114 strains with a high virulence potential (up to 12 determinants). No statistical association was found between virulence clusters and species allocation (p > 0.10), strongly suggesting that virulence determinants are a common trait in the genus Enterococcus. Clinical strains seem to be significantly associated with high virulence potential, whereas food, commensal and environmental strains harbour fewer virulence determinants (p < 0.01). A high level of relative diversity in virulence patterns was observed (Shannon's index varies from 0.95 to 1.0 among clusters), reinforcing the strain-specific nature of the association of virulence factors. Although a low risk seems to be associated with the use of enterococci in long-established artisanal cheeses, screening of virulence traits and their cross-synergies must be performed, particularly for commercial starters, probiotic strains and products to be used by high risk population groups.  相似文献   
992.
993.
A significantly higher frequency of apoptosis was documented by flow cytometry and by ELISA analysis, and significantly higher numbers of necrotic cells were demonstrated by ELISA within the thymus of Lurcher mice in comparison with the control C3H mice. These can be regarded as important markers of degenerative changes in this primary immune organ. This tendency is supported by histological observation of the absence of a clear interface between thymic cortex and medulla and an insignificantly increased number of Hassall's corpuscles resembling an onset of thymic atrophy.  相似文献   
994.
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.  相似文献   
995.
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.  相似文献   
996.
Suárez  N. 《Photosynthetica》2003,41(3):373-381
This study assessed the effect of leaf age on construction cost (CC) in the mangrove species Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle growing in their natural habitat. Leaf osmolality values were species-specific, the highest in A. germinans (1 693 mmol kg–1) and the lowest in L. racemosa (1 270 mmol kg–1). In the three species, contents of chlorophyll (a+b) (Chla+b) and nitrogen (N) per unit of leaf area were maximal in adult leaves and tended to decline with age. Leaf mass to leaf area ratio (LMA) and ash content increased during leaf ageing. Similarly, as leaves aged, a significant increase in leaf construction cost per leaf area (CCa) was observed, while per leaf mass (CCm) it remained almost constant, suggesting a sustained production of leaf compounds as leaves became older. CC was positively correlated with LMA and heat of combustion (Hc) per leaf area, suggesting differences among species in the quantity and composition of expensive compounds. Leaf half lifetime (t0.5) showed contrasting values in the three mangrove species (60, 111, and 160 d in L. racemosa, R. mangle, and A. germinans, respectively). Overall, L. racemosa was the species with less expensive leaves to construct while leaves of A. germinans and R. mangle had the highest CCm and CCa, respectively. Leaf longevity was positively correlated with the ratio between CC and maximum photosynthetic rate (P max), clearly showing the existence of a balance between leaf costs and benefits.  相似文献   
997.
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called “portal region”, formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.  相似文献   
998.
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.Programmed cell death (PCD)1 is a fundamental event for the development of multicellular organisms and the homeostasis of their tissues. It is an evolutionarily conserved mechanism present in organisms ranging from yeast to mammals (13).In mammals, cytochrome c (Cc) and dATP bind to apoptosis protease-activating factor-1 (Apaf-1) in the cytoplasm, a process leading to the formation of the Apaf-1/caspase-9 complex known as apoptosome. This apoptosome subsequently activates caspases-3 and -7 (4, 5). In other organisms, such as Caenorhabditis elegans or Drosophila melanogaster, however, Cc is not essential for the assembly and activation of the apoptosome (6) despite the presence of proteins homologous to Apaf-1—cell death abnormality-4 (CED-4) in C. elegans and Drosophila Apaf-1-related killer (Dark) in D. melanogaster—which have been found to be essential for caspase cascade activation. Furthermore, other organisms such as Arabidopsis thaliana lack Apaf-1 (7). In fact, only highly distant caspase homologues (metacaspases) (8, 9), serine proteases (saspases) (10), phytaspases (11) and VEIDases (1214) with caspase-like activity have been detected in plants; however, their targets remain veiled and whether they are activated by Cc remains unclear.Intriguingly, the release of Cc from mitochondria into the cytoplasm during the onset of PCD is an evolutionarily conserved event found in organisms ranging from yeast (15) and plants (16) to flies (17), and mammals (18). However, understanding of the roles of this phenomenon in different species can be said to be uneven at best. In fact, the release of Cc from mitochondria has thus far been considered a random event in all organisms, save mammals. Thus, the participation of Cc in the onset and progression of PCD needs to be further elucidated.Even in the case of mammals, the role(s) of Cc in the cytoplasm during PCD remain(s) controversial. Recently, new putative functions of Cc, going beyond the already-established apoptosome assembly process, have been proposed in the nucleus (19, 20) and the endoplasmic reticulum (2123). Neither these newly proposed functions nor other arising functions, such as oxidative stress (24), are as yet fully understood. This current state of affairs demands deeper exploration of the additional roles played by Cc in nonmammalian species.In this study, putative novel Cc-partners involved in plant PCD were identified. For this identification, a proteomic approach was employed based on affinity chromatography and using Cc as bait. The Cc-interacting proteins were identified using nano-liquid chromatography tandem mass spectrometry (NanoLC-MS/MS). These Cc-partners were then further confirmed in vivo through bimolecular fluorescence complementation (BiFC) in A. thaliana protoplasts and human HEK293T cells, as a heterologous system. Finally, the Cc-GLY2, Cc-NRP1 and Cc-TCL interactions were corroborated in vitro using surface plasmon resonance (SPR).These results indicate that Cc is able to interact with targets in the plant cell cytoplasm during PCD. Moreover, they provide new ways of understanding why Cc release is an evolutionarily well-conserved event, and allow us to propose Cc as a signaling messenger, which somehow controls different essential events during PCD.  相似文献   
999.
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.  相似文献   
1000.

Purpose

Standard treatment for glioblastoma (GBM) is surgery followed by radiation (RT) and temozolomide (TMZ). While there is variability in survival based on several established prognostic factors, the prognostic utility of other factors such as tumor size and location are not well established.

Experimental Design

The charts of ninety two patients with GBM treated with RT at the National Cancer Institute (NCI) between 1998 and 2012 were retrospectively reviewed. Most patients received RT with concurrent and adjuvant TMZ. Topographic locations were classified using preoperative imaging. Gross tumor volumes were contoured using treatment planning systems utilizing both pre-operative and post-operative MR imaging.

Results

At a median follow-up of 18.7 months, the median overall survival (OS) and progression-free survival (PFS) for all patients was 17.9 and 7.6 months. Patients with the smallest tumors had a median OS of 52.3 months compared to 16.3 months among patients with the largest tumors, P = 0.006. The patients who received bevacizumab after recurrence had a median OS of 23.3 months, compared to 16.3 months in patients who did not receive it, P = 0.0284. The median PFS and OS in patients with periventricular tumors was 5.7 and 17.5 months, versus 8.9 and 23.3 months in patients with non-periventricular tumors, P = 0.005.

Conclusions

Survival in our cohort was comparable to the outcome of the defining EORTC-NCIC trial establishing the use of RT+TMZ. This study also identifies several potential prognostic factors that may be useful in stratifying patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号