全文获取类型
收费全文 | 2909篇 |
免费 | 258篇 |
国内免费 | 1篇 |
专业分类
3168篇 |
出版年
2024年 | 4篇 |
2023年 | 24篇 |
2022年 | 40篇 |
2021年 | 87篇 |
2020年 | 63篇 |
2019年 | 53篇 |
2018年 | 88篇 |
2017年 | 66篇 |
2016年 | 142篇 |
2015年 | 166篇 |
2014年 | 174篇 |
2013年 | 234篇 |
2012年 | 256篇 |
2011年 | 234篇 |
2010年 | 148篇 |
2009年 | 112篇 |
2008年 | 183篇 |
2007年 | 176篇 |
2006年 | 137篇 |
2005年 | 134篇 |
2004年 | 114篇 |
2003年 | 108篇 |
2002年 | 87篇 |
2001年 | 25篇 |
2000年 | 22篇 |
1999年 | 29篇 |
1998年 | 17篇 |
1997年 | 16篇 |
1996年 | 18篇 |
1995年 | 15篇 |
1994年 | 8篇 |
1993年 | 11篇 |
1992年 | 16篇 |
1991年 | 9篇 |
1990年 | 13篇 |
1989年 | 11篇 |
1988年 | 13篇 |
1987年 | 7篇 |
1986年 | 12篇 |
1985年 | 12篇 |
1984年 | 5篇 |
1982年 | 5篇 |
1979年 | 5篇 |
1974年 | 4篇 |
1973年 | 10篇 |
1972年 | 3篇 |
1970年 | 5篇 |
1969年 | 4篇 |
1958年 | 3篇 |
1944年 | 3篇 |
排序方式: 共有3168条查询结果,搜索用时 0 毫秒
991.
Beta diversity represents a powerful indicator of ecological conditions because of its intrinsic relation with environmental gradients. In this view, remote sensing may be profitably used to derive models characterizing or estimating species turnover over an area. While several examples exist using spectral variability to estimate species diversity at several spatial scales, most of these have relied on standard correlation or regression approaches like the common Ordinary Least Square (OLS) regression which are problematic with noisy data. Moreover, very few attempts were made to derive beta diversity characterization models at different taxonomic ranks. In this paper, we performed quantile regression to test if spectral distance represents a good proxy of beta diversity considering different data thresholds and taxonomic ranks. We used plant distribution data from the North and South Carolina including 146 counties and covering a variety of vegetation formations. The dissimilarity in species composition at different taxonomic ranks (using Sørensen distance) among pairs of counties was compared with their distance in NDVI values derived from 23 yearly MODIS images. Our results indicate that (i) spectral variability represents a good proxy of beta diversity when appropriate statistics are applied and (ii) a lower taxonomic rank is important when changes in species composition are examined spatially using remotely sensed data. 相似文献
992.
Three non-capsid, phage-encoded proteins, pI, pIV and pXI, are required for assembly of the filamentous bacteriophage at the envelope of Escherichia coli. pIV forms the outer membrane component of the assembly site, and pI and pXI are predicted to form the cytoplasmic membrane component. pXI is the result of an in-frame internal translational initiation event in gene I and is identical with the carboxyl-terminal third of pI in amino acid sequence, membrane localization and topology. The two proteins share a cytoplasmic domain predicted to be an amphipathic helix, a transmembrane domain, and a periplasmic domain. By mutating the initiation site for pXI, a phage was made that produced only pI and was shown to absolutely require functional plasmid-encoded pXI for growth. Further mutational analysis was done to examine the functional determinants of the amphipathic helix and periplasmic domains of the pI and pXI proteins. The results show that the amphipathic helix region is very important for pI function but not for pXI function. Mutational analysis of the periplasmic domains of pI and pXI implies that these domains also perform separate functions, and suggests that the interaction between pI and pIV in the periplasm is critical for assembly. The results are discussed with regard to the separate roles that the pI and pXI proteins play in the overall process of phage assembly. 相似文献
993.
Genetic Determinants of Volatile-Thiol Release by Saccharomyces cerevisiae during Wine Fermentation 下载免费PDF全文
Kate S. Howell Mathias Klein Jan H. Swiegers Yoji Hayasaka Gordon M. Elsey Graham H. Fleet Peter B. H?j Isak S. Pretorius Miguel A. de Barros Lopes 《Applied microbiology》2005,71(9):5420-5426
Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens. 相似文献
994.
Mansergh FC Hunter SM Geatrell JC Jarrin M Powell K Evans MJ Wride MA 《The International journal of developmental biology》2008,52(7):873-886
We investigated the spatio-temporal profile of hemoglobin subunit expression in developing avascular tissues. Significant up-regulation of hemoglobin subunits was identified in microarray experiments comparing blastocyst inner cell masses with undifferentiated embryonic stem (ES) cells. Hemoglobin expression changes were confirmed using embryoid bodies (derived from in vitro differentiation of ES cells) to model very early development at pre-vascular stages of embryogenesis; i.e. prior to hematopoiesis. We also demonstrate, using RT-PCR, Western blotting and immunocytochemistry, expression of adult and fetal mouse hemoglobin subunits in the avascular ocular lens at various stages of development and maturation. Hemoglobin proteins were expressed in lens epithelial cells (cytoplasmic) and cortical lens fiber cells (nuclear and cell-surface-associated); however, a sensitive heme assay demonstrated negligible levels of heme in the developing lens postnatally. Hemoglobin expression was also observed in the developing eye in corneal endothelium and retinal ganglion cells. Gut sections showed, in addition to erythrocytes, hemoglobin protein staining in rare, individual villus epithelial cells. These results suggest a paradigm shift: hemoglobin subunits are expressed in the avascular lens and cornea and in pre-hematopoietic embryos. It is likely, therefore, that hemoglobin subunits have novel developmental roles; the absence of the heme group from the lens would indicate that at least some of these functions may be independent of oxygen metabolism. The pattern of expression of hemoglobin subunits in the perinuclear region during lens fiber cell differentiation, when denucleation is taking place, may indicate involvement in the apoptosis-like signaling processes occurring in differentiating lens fiber cells. 相似文献
995.
Andreas Makiola Ian A. Dickie Robert J. Holdaway Jamie R. Wood Kate H. Orwin Travis R. Glare 《Molecular ecology》2019,28(16):3786-3798
Little is known about the diversity patterns of plant pathogens and how they change with land use at a broad scale. We employed DNA metabarcoding to describe the diversity and composition of putative plant pathogen communities in three substrates (soil, roots, and leaves) across five major land uses at a national scale. Almost all plant pathogen communities (fungi, oomycetes, and bacteria) showed strong responses to land use and substrate type. Land use category could explain up to 24% of the variance in composition between communities. Alpha‐diversity (richness) of plant pathogens was consistently lower in natural forests than in agricultural systems. In planted forests, there was also generally low pathogen alpha‐diversity in soil and roots, but alpha‐diversity in leaves was high compared with most other land uses. In contrast to alpha‐diversity, differences in within‐land use beta‐diversity of plant pathogens (the predictability of plant pathogen communities within land use) were subtle. Our results show that large‐scale patterns and distributions of putative plant pathogens can be determined using metabarcoding, allowing some of the first landscape level insights into these critically important communities. 相似文献
996.
Skropeta D Settasatian C McMahon MR Shearston K Caiazza D McGrath KC Jin W Rader DJ Barter PJ Rye KA 《Journal of lipid research》2007,48(9):2047-2057
Endothelial lipase (EL) is a member of the triglyceride lipase gene family with high phospholipase and low triacylglycerol lipase activities and a distinct preference for hydrolyzing phospholipids in HDL. EL has five potential N-glycosylation sites, four of which are glycosylated. The aim of this study was to determine how glycosylation affects the phospholipase activity of EL in physiologically relevant substrates. Site-directed mutants of EL were generated by replacing asparagine (N) 62, 118, 375, and 473 with alanine (A). These glycan-deficient mutants were used to investigate the kinetics of phospholipid hydrolysis in fully characterized preparations of spherical reconstituted high density lipoprotein (rHDL) containing apolipoprotein E2 (apoE2) [(E2)rHDL], apoE3 [(E3)rHDL], apoE4 [(E4)rHDL], or apoA-I [(A-I)rHDL] as the sole apolipoprotein. Wild-type EL hydrolyzed the phospholipids in (A-I)rHDL, (E2)rHDL, (E3)rHDL, and (E4)rHDL to similar extents. The phospholipase activities of EL N118A, EL N375A, and EL N473A were significantly diminished relative to that of wild-type EL, with the greatest reduction being apparent for (E3)rHDL. The phospholipase activity of EL N62A was increased up to 6-fold relative to that of wild-type EL, with the greatest enhancement of activity being observed for (E2)rHDL. These data show that individual N-linked glycans have unique and important effects on the phospholipase activity and substrate specificity of EL. 相似文献
997.
Qiong Wang Franois Guerrero Kate Lambrechts Aleksandra Mazur Peter Buzzacott Marc Belhomme Michal Theron 《Journal of physiology and biochemistry》2020,76(1):61-72
Human diving is known to induce endothelial dysfunction. The aim of this study was to decipher the mechanism of ROS production during diving through the measure of mitochondrial calcium concentration, peroxynitrite, NO°, and superoxide towards better understanding of dive-induced endothelial dysfunction. Air diving simulation using bovine arterial endothelial cells (compression rate 101 kPa/min to 808 kPa, time at depth 45 min) was performed in a system allowing real-time fluorescent measurement. During compression, the cells showed increased mitochondrial superoxide, peroxynitrite, and mitochondrial calcium, and decreased NO° concentration. MnTBAP (peroxynitrite scavenger) suppressed superoxide, recovered NO° production and promoted stronger calcium influx. Superoxide and peroxynitrite were inhibited by L-NIO (eNOS inhibitor), but were further increased by spermine-NONOate (NO° donor). L-NIO induced stronger calcium influx than spermine-NONOate or simple diving. The superoxide and peroxynitrite were also inhibited by ruthenium red (blocker of mitochondrial Ca2+ uniporter), but were increased by CGP (an inhibitor of mitochondrial Na+-Ca2+ exchange). Reactive oxygen and nitrogen species changes are associated, together with calcium mitochondrial storage, with endothelial cell dysfunction during simulated diving. Peroxynitrite is involved in NO° loss, possibly through the attenuation of eNOS and by increasing superoxide which combines with NO° and forms more peroxynitrite. In the field of diving physiology, this study is the first to unveil a part of the cellular mechanisms of ROS production during diving and confirms that diving-induced loss of NO° is linked to superoxide and peroxynitrite. 相似文献
998.
Soil Microbial Community Associated with an Invasive Grass Differentially Impacts Native Plant Performance 总被引:1,自引:0,他引:1
This study is one of the first to show that invasive plant-induced changes in the soil microbial community can negatively
impact native plant performance. This greenhouse experiment tested whether soil microbial communities specific to the rhizospheres
of an invasive grass (Aegilops triuncialis) and two native plants (Lasthenia californica and Plantago erecta) affected invasive and/or native plant performance. Each of these species were grown in separate pots for 2 months to prime
the soils with plant-specific rhizosphere microbial communities. Each plant species was then planted in native- and invasive-primed
soil, and effects on plant performance were monitored. At 5 months, differences in microbial biomarker fatty acids between
invaded and native soils mirrored previous differences found in field-collected soil. L. californica performance was significantly reduced when grown in invaded soil compared to native soil (flowering date was delayed, aboveground
biomass decreased, specific root length increased, and root mass ratio increased). In contrast, P. erecta and A. triuncialis performance were unaffected when grown in invaded vs native soil. These results suggest that in some cases, invasion-induced
changes in the soil microbial community may contribute to a positive feedback loop, leading to the increased dominance of
invasive species in an ecosystem. 相似文献
999.
Si Qi Yao Peter M. Groffman Christine Alewell Kate Ballantine 《Restoration Ecology》2018,26(2):294-302
Wetlands perform important ecosystem functions, including improvement of water quality through the process of denitrification. To offset the negative environmental impact of replacing wetlands with agriculture and development, the United States has a policy requiring that losses in wetland area are compensated for through wetland restoration elsewhere. However, these restored wetlands may require decades to achieve functional equivalency to natural wetlands. We evaluated the efficacy of using carbon amendments during restoration to promote denitrification potential in four restored wetlands in central New York State, United States. The amendments were straw, topsoil, and biochar, chosen to range along a gradient of carbon lability. Soil samples collected 6 years after restoration were analyzed for denitrification potential and associated soil properties, including soil carbon and nitrogen, pH, microbial biomass carbon and nitrogen, carbon lability, and potential net nitrogen mineralization and nitrification. Compared to unamended control plots, denitrification potential was approximately 3 times higher in straw‐amended plots, 8 times higher in topsoil‐amended plots, and 11 times higher in biochar‐amended plots. Denitrification potential positively correlated with both soil organic carbon and microbial biomass nitrogen, suggesting that the use of soil amendments in restorations can help stimulate the development of denitrification potential by facilitating the suite of carbon and nitrogen cycling processes that underlie this function. However, denitrification potential in a nearby natural reference wetland was at least 50 times higher than it was in the restored wetland plots, highlighting the limitations of using wetland restoration to compensate for the loss of natural wetlands. 相似文献
1000.
Barbora Kalousová Alexander K. Piel Kateřina Pomajbíková David Modrý Fiona A. Stewart Klára J. Petrželková 《International journal of primatology》2014,35(2):463-475
Understanding variability in patterns of parasite infections requires studies of multiple populations inhabiting a variety of habitats. Gastrointestinal parasites of chimpanzees (Pan troglodytes) have been studied extensively at several forested sites, but the parasite fauna of chimpanzees living in dry, open habitats is less well known. We studied the parasites of savanna chimpanzees (Pan troglodytes schweinfurthii) living in the Issa Valley, Ugalla (Tanzania). We examined 119 fresh fecal samples using standard coproscopical methods. We detected protozoans including Blastocystis sp., Entamoeba coli, E. histolytica/dispar, Iodamoeba buetschlii, Troglodytella abrassarti, and Troglocorys cava, but only two types of spirurid nematodes among the helminths. The parasites of the Ugalla chimpanzees differ from those of forest chimpanzees in the absence of Strongyloides sp. and strongylid nematodes and a high prevalence of spirurids. Strongylids and Strongyloides sp. have thin-shelled eggs and larvae, which develop in the external environment; thus they may not be able to survive for prolonged periods in the extreme environment of Ugalla. The Ugalla chimpanzees also live at a lower population density and exhibit a larger home range than forest chimpanzees, factors that may lead to lower exposure to infective nematode larvae. Spirurid eggs, however, have thick shells and a life cycle dependent on intermediary hosts, making their survival and transmission in such extreme conditions more feasible. These differences between parasite fauna of closed and open forest chimpanzees contribute to our understanding of the ecology of infectious disease, and have the potential to contribute to conservation policies and practices. 相似文献