首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1993年   1篇
  1991年   2篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
排序方式: 共有28条查询结果,搜索用时 718 毫秒
21.
Currently used antiestrogenic drugs against hormone-dependent breast cancer, and estrogenic drugs used in treatment of osteoporosis, are associated with risk factors. Therefore, there is a strong need to develop selective estrogen receptor modulators with better tissue selectivity. In a recent study (Peptides, 2002, Vol. 3, 573-580), we used a monoclonal antibody to estradiol (mAb-E2) to screen a phage-display peptide library. We identified a 15-mer peptide (peptide H5) that recognizes mAb-E2 (IC(50) 1 microM) and estrogen receptor (ER)alpha (IC(50) 500 microM) but not ERbeta, and displays estrogen-like activity in vitro and in vivo. In this study, we designed and prepared peptides based on peptide H5, which possess improved estrogenic activity, by evaluating their binding to mAb-E2 and to ERs. Initially, we determined the minimal binding sequence of peptide H5 capable of binding mAb-E2 and ER. Subsequently, systematic single-residue replacements of the minimal sequence, followed by multiple-residue replacements, yielded hexa- and heptapeptides with increased affinities to mAb-E2 and to ER. The most promising peptides, VSWFFE (EMP-1) and VSWFFED (EMP-2) (EMP: estrogen-mimetic peptide), bind mAb-E2 with high affinity (IC(50) of 6 and 30 nM, respectively), recognize ERs with increased affinity (IC(50) of 100 microM for ERalpha, and 100-250 microM for ERbeta), and possess estrogenic activity in vivo. The short peptides described in this study may be used as potential lead compounds for developing new ER ligands.  相似文献   
22.
α-Bungarotoxin (α-BTX) is a highly toxic snake neurotoxin that binds to acetylcholine receptor (AChR) at the neuromuscular junction, and is a potent inhibitor of this receptor. In the following we review multi-phase research of the design, synthesis and structure analysis of peptides that bind α-BTX and inhibit its binding to AChR. Structure-based design concomitant with biological information of the α-BTX/AChR system yielded 13-mer peptides that bind to α-BTX with high affinity and are potent inhibitors of α-BTX binding to AChR (IC50 of 2 nM). X-Ray and NMR spectroscopy reveal that the high-affinity peptides fold into an anti-parallel β-hairpin structure when bound to α-BTX. The structures of the bound peptides and the homologous loop of acetylcholine binding protein, a soluble analog of AChR, are remarkably similar. Their superposition indicates that the toxin wraps around the binding-site loop, and in addition, binds tightly at the interface of two of the receptor subunits and blocks access of acetylcholine to its binding site. The procedure described in this article may serve as a paradigm for obtaining high-affinity peptides in biochemical systems that contain a ligand and a receptor molecule.  相似文献   
23.
The structures of two binary complexes (the TEM-1/BLIP complex and the trypsin/amiloride complex) were predicted prior to their experimental determination and compared to the corresponding experimental structures when these became available. In both predictions the rigid-body geometric docking algorithm ranked the correct solution among the top ones. Additional information concerning the structure and chemical character of the binding site of one of the molecules in the complex was used to single out the correct solution. The results indicate that the combination of geometric surface matching with biochemical information produces a useful tool for structure prediction.  相似文献   
24.
25.
26.
The movement of enzymes along the surfaces of biopolymers containing enzyme-susceptible sites can be described as a lateral diffusion process characterized by an apparent diffusion coefficient [E. Katchalski-Katzir, J. Rishpon, E. Sahar, R. Lamed, and Y. I. Henis (1985) Biopolymers 24 , 257–277]. Studies on the diffusion of enzymes on biopolymer substrates can therefore provide important information on the mechanism of enzyme–biopolymer interaction. For this reason, the motion of fluorescently labeled β-amylase [α-D -(1 → 4)glucan maltohydrolase; E.C. 3.2.1.2] on the surface of starch gels was studied by fluorescence photobleaching recovery. The results indicate that the motion of β-amylase on the surface of the gel substrate occurs by both lateral diffusion along the surface (over micron distances) and exchange between bound and free enzyme molecules in the solution covering the gel, and that the two processes occur concomitantly and in a random manner. Surface diffusion also appears an important process with respect to the action of the enzyme on the substrate sites, since this component of the motion disappears upon inactivation of the enzyme, leaving only exchange to contribute to the measured motion.  相似文献   
27.
28.
The design and application of a recently developed type of fluorogenic substrates for proteolytic enzymes is reviewed. The substrates consist of peptide chains constructed to match the specificity of the particular enzyme and to bear a suitable chromophore at each side of the cleavable bond. One of the chromophores is a fluorescent group and the other is a quencher that causes a great reduction of fluorescence intensity of the fluorophore, either by direct intramolecular encounter or by radiationless resonance energy transfer. Enzymic cleavage of the molecule is followed by release of fluorescence as the result of cancelling the quenching interaction between the chromophores. The properties of such substrates and their possible future applications are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号