首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1169篇
  免费   122篇
  国内免费   1篇
  2022年   3篇
  2021年   15篇
  2020年   8篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   23篇
  2015年   38篇
  2014年   32篇
  2013年   74篇
  2012年   71篇
  2011年   69篇
  2010年   48篇
  2009年   43篇
  2008年   52篇
  2007年   60篇
  2006年   55篇
  2005年   57篇
  2004年   77篇
  2003年   36篇
  2002年   49篇
  2001年   46篇
  2000年   48篇
  1999年   44篇
  1998年   20篇
  1997年   13篇
  1996年   18篇
  1995年   17篇
  1994年   9篇
  1993年   11篇
  1992年   19篇
  1991年   21篇
  1990年   20篇
  1989年   18篇
  1988年   12篇
  1987年   13篇
  1986年   27篇
  1985年   14篇
  1984年   15篇
  1983年   11篇
  1981年   7篇
  1980年   4篇
  1979年   12篇
  1978年   9篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1972年   5篇
  1968年   3篇
  1967年   3篇
排序方式: 共有1292条查询结果,搜索用时 31 毫秒
121.
The small subunit of ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS, is essential for photosynthesis in both C3 and C4 plants, even though the cell specificity of rbcS expression is different between C3 and C4 plants. The C3 rbcS is specifically expressed in mesophyll cells, while the C4 rbcS is expressed in bundle sheath cells, and not mesophyll cells. Two chimeric genes were constructed consisting of the structural gene encoding -glucuronidase (GUS) controlled by the two promoters from maize (C4) and rice (C3) rbcS genes. These constructs were introduced into a C4 plant, maize. Both chimeric genes were specifically expressed in photosynthetic organs, such as leaf blade, but not in non-photosynthetic organs. The expressions of the genes were also regulated by light. However, the rice promoter drove the GUS activity mainly in mesophyll cells and relatively low in bundle sheath cells, while the maize rbcS promoter induced the activity specifically in bundle sheath cells. These results suggest that the rice promoter contains some cis-acting elements responding in an organ-pecific and light-inducible regulation manner in maize but does not contain element(s) for bundle sheath cell-specific expression, while the maize promoter does contain such element(s). Based on this result, we discuss the similarities and differences between the rice (C3) and maize (C4) rbcS promoter in terms of the evolution of the C4 photosynthetic gene.  相似文献   
122.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
123.
Sphingomonas paucimobilis SYK-6 transforms 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the β subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704–2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405–3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2′-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841–4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249–5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2′,3,3′-tetrahydroxy-5,5′-dicarboxybiphenyl and was dependent on the ferrous ion.Lignin is the most common aromatic compound in the biosphere, and the degradation of lignin is a significant step in the global carbon cycle. Lignin is composed of various intermolecular linkages between phenylpropanes and guaiacyl, syringyl, p-hydroxyphenyl, and biphenyl nuclei (5, 34). Lignin breakdown therefore involves multiple biochemical reactions involving the cleavage of intermonomeric linkages, demethylations, hydroxylations, side-chain modifications, and aromatic ring fission (10, 11, 19, 40).Soil bacteria are known to display ample metabolic versatility toward aromatic substrates. Sphingomonas paucimobilis SYK-6 (formerly Pseudomonas paucimobilis SYK-6) has been isolated with 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA) as a sole carbon and energy source. This strain can also grow on syringate, 3-O-methylgallic acid (3OMGA), vanillate, and other dimeric lignin compounds, including β-aryl ether, diarylpropane (β-1), and phenylcoumaran (15). Analysis of the metabolic pathway has indicated that the dimeric lignin compounds are degraded to protocatechuate or 3OMGA (15) and that these compounds are cleaved by protocatechuate 4,5-dioxygenase encoded by ligAB (30). Among the dimeric lignin compounds, the degradation of β-aryl ether and the biphenyl structure is the most important, because β-aryl ether is most abundant in lignin (50%) and the biphenyl structure is so stable that its decomposition should be rate limiting in lignin degradation. We have already characterized the β-etherase and Cα-dehydrogenase genes (2326) (ligFE and ligD, respectively) involved in the degradation of β-aryl ether. In this study, we focused on the genes responsible for the degradation of DDVA in SYK-6.In the proposed DDVA metabolic pathway of S. paucimobilis SYK-6 illustrated in Fig. Fig.1A,1A, DDVA is first demethylated to produce the diol compound 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). OH-DDVA is then degraded to 5-carboxyvanillic acid (5-CVA), and this compound is converted to 3OMGA (15). The resulting product is cleaved by protocatechuate 4,5-dioxygenase. A ring cleavage enzyme for OH-DDVA has been thought to be involved in this pathway because the production of 5-CVA from OH-DDVA resembles the formation of benzoic acid from biphenyl by 2,3-dihydroxybiphenyl through the sequential action of a meta cleavage enzyme and a meta-cleavage compound hydrolase (Fig. (Fig.1B)1B) (1, 9, 13, 18, 21, 28). Open in a separate windowFIG. 1(A) Proposed metabolic pathway for DDVA by S. paucimobilis SYK-6. (B) Pathway for the conversion of 2,3-dihydroxybiphenyl (2,3-DHBP) to benzoate by the polychlorinated biphenyl-degrading bacteria. The proposed DDVA metabolic pathway follows the previous one (15). Enzymes: LigZ, OH-DDVA oxygenase; LigAB, protocatechuate 4,5-dioxygenase; BphC, 2,3-dihydroxybiphenyl 1,2-dioxygenase; BphD, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase. TCA, tricarboxylic acid.In this study, we isolated the ligZ gene encoding a ring cleavage enzyme for OH-DDVA. The nucleotide sequence of the gene was determined, and the ligZ gene product was characterized.  相似文献   
124.
We have cloned and sequenced the fission yeast (Schizosaccharomyces pombe)fas1+gene, which encodes the fatty acid synthetase (FAS) β subunit, by applying a PCR technique to conserved regions in the β subunit of the α6β6types of FAS among different organisms. The deduced amino acid sequence of the Fas1 polypeptide, consisting of 2073 amino acids (Mr= 230,616), exhibits the 48.1% identity with the β subunit from the budding yeast (Saccharomyces cerevisiae). This subunit, with five different catalytic activities, bears four distinct domains, while the α subunit, the sequence of which was previously reported by Saitohet al.(S. Saitohet al.,1996,J. Cell Biol.134, 949–961), carries three domains. We have developed a co-expression system of the FAS α and β subunits by cotransformation of two expression vectors, containing thelsd1+/fas2+gene and thefas1+gene, into fission yeast cells. The isolated FAS complex showed quite high specific activity, of more than 4000 mU/mg, suggesting complete purification. Its molecular weight was determined by dynamic light scattering and ultracentrifugation analysis to be 2.1–2.4 × 106, and one molecule of the FAS complex was found to contain approximately six FMN molecules. These results indicate that the FAS complex fromS. pombeforms a heterododecameric α6β6structure. Electron micrographs of the negatively stained molecule suggest that the complex adopts a unique barrel-shaped cage architecture.  相似文献   
125.
Full length cDNA and genomic DNA of porcine -1,3-galactosyltransferase were isolated, and their structures were analysed. The coding region was encoded by six exons as in the mouse, and the length of each exon was conserved between the two species. The porcine exons were designated Exon 4–9, since in the mouse coding exons started from Exon 4. Introns tended to be longer in the porcine gene; the distance from Exon 4 to the 3-end of Exon 9 was 24 kb, while this region was 18 kb in the mouse gene. The cDNA structure was extended from the previous data to the 3-end and to the 5 side of the cDNA. In addition to a cDNA clone with all coding exons, clones lacking parts of these exons were isolated and their structures were determined. One variant lacked Exon 5; the second, Exons 5 and 6; and the third, Exons 5, 6 and 7. The last variant was not found in the mouse, and cDNA transfection of this variant yielded scarcely any enzymatic activity using asialo 1-acid glycoprotein as a substrate, and decreased activity using N-acetyllactosamine as a substrate.  相似文献   
126.
127.
The emergence and rapid spread of unusual DS-1-like G1P[8] rotaviruses in Japan have been recently reported. During rotavirus surveillance in Thailand, three DS-1-like G1P[8] strains (RVA/Human-wt/THA/PCB-180/2013/G1P[8], RVA/Human-wt/THA/SKT-109/2013/G1P[8], and RVA/Human-wt/THA/SSKT-41/2013/G1P[8]) were identified in stool specimens from hospitalized children with severe diarrhea. In this study, we sequenced and characterized the complete genomes of strains PCB-180, SKT-109, and SSKT-41. On whole genomic analysis, all three strains exhibited a unique genotype constellation including both genogroup 1 and 2 genes: G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. This novel genotype constellation is shared with Japanese DS-1-like G1P[8] strains. Phylogenetic analysis revealed that the G/P genes of strains PCB-180, SKT-109, and SSKT-41 appeared to have originated from human Wa-like G1P[8] strains. On the other hand, the non-G/P genes of the three strains were assumed to have originated from human DS-1-like strains. Thus, strains PCB-180, SKT-109, and SSKT-41 appeared to be derived through reassortment event(s) between Wa-like G1P[8] and DS-1-like human rotaviruses. Furthermore, strains PCB-180, SKT-109, and SSKT-41 were found to have the 11-segment genome almost indistinguishable from one another in their nucleotide sequences and phylogenetic lineages, indicating the derivation of the three strains from a common origin. Moreover, all the 11 genes of the three strains were closely related to those of Japanese DS-1-like G1P[8] strains. Therefore, DS-1-like G1P[8] strains that have emerged in Thailand and Japan were assumed to have originated from a recent common ancestor. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like G1P[8] strains that have emerged in an area other than Japan. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] rotaviruses.  相似文献   
128.
Hepatitis E virus (HEV) is a growing public health problem in many countries. In this study, we investigated HEV seroprevalence among the general population in the Siem Reap province, Cambodia, and performed HEV genetic analysis with the aim to develop an HEV prevention strategy. This seroepidemiological cross-sectional study conducted from 2010 to 2014 included 868 participants from four different locations in Siem Reap province, Cambodia. They answered questionnaires and provided blood samples for the analysis of hepatitis virus infections. Among the participants (360 men and 508 women; age range, 7–90 years), the prevalence of anti-HEV IgG was 18.4% (95% confidence interval: 15.9–21.0); HEV RNA was detected in two participants (0.23%) and was classified as genotype 3 and 4. Full-length genome of the genotype 4 isolate, CVS-Sie10, was sequenced; it contained 7,222 nucleotides and three ORFs and demonstrated high sequence identity with the swine China isolates swGX40 (95.57%), SS19 (94.37%), and swDQ (91.94%). Multivariate logistic regression analysis revealed that men, elderly people, and house workers were risk groups significantly associated with the positivity for anti-HEV IgG. This is the first report on the detection of HEV genotype 4 in humans in Cambodia and on the complete genome sequence of HEV genotype 4 from this country. Our study demonstrates that new HEV infection cases occur frequently among the general population in Cambodia, and effective preventive measures are required.  相似文献   
129.
G protein-coupled receptor kinases (GRKs) control the signaling and activation of G protein-coupled receptors through phosphorylation. In this study, consensus substrate motifs for GRK2 were identified from the sequences of GRK2 protein substrates, and 17 candidate peptides were synthesized to identify peptide substrates with high affinity for GRK2. GRK2 appears to require an acidic amino acid at the −2, −3, or −4 positions and its consensus phosphorylation site motifs were identified as (D/E)X1–3(S/T), (D/E)X1–3(S/T)(D/E), or (D/E)X0–2(D/E)(S/T). Among the 17 peptide substrates examined, a 13-amino-acid peptide fragment of β-tubulin (DEMEFTEAESNMN) showed the highest affinity for GRK2 (Km, 33.9 μM; Vmax, 0.35 pmol min−1 mg−1), but very low affinity for GRK5. This peptide may be a useful tool for investigating cellular signaling pathways regulated by GRK2.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号