The efficacy of systemic infusion of recombinant human macrophage-colony-stimulating factor (M-CSF) in combination with local treatment with human recombinant tumor necrosis factor (TNF) and mouse recombinant interferon (IFN) was studied in vivo on a subclone of B16 melanoma (MmB16) in mice. Short-term intravenous administration of M-CSF at a dose of 106 units daily had no antitumor effect in vivo. Similarly, local treatment of tumor with TNF (5 g daily) did not produce any therapeutic effect. However, simultaneous administration of the same dose of TNF with IFN (1000 units daily) resulted in a synergistic effects manifested by the retardation of tumor growth. Addition of systemic infusion of M-CSF to the local therapy with TNF and IFN induced further augmentation of antitumor efficacy and delayed progression of MmB16 melanoma. The strengthened antitumor effect of combination therapy including M-CSF, TNF and IFN was most probably due to the increased release of monocytes from the bone marrow, their recruitment into the site of tumor growth and subsequent local stimulation of their antitumor activity. 相似文献
The purpose of the study was to evaluate Chamerion angustifolium (L.) Holub genotypes for preliminary selection and further breeding programs aimed at obtaining a suitable industrial form for the pharmaceutical applications. Clonally propagated plants representing 10 genotypes of Ch. angustifolium were regenerated under in vitro conditions, hardened and planted in the field. Studies included an evaluation of shoot proliferation, phytochemical assessment of in vitro and ex vitro plants as well as investigations of intraspecies variability regarding four phenological stages: vegetative, beginning of blooming, full blooming, and green fruit phases. Quantitative and qualitative analyses of bioactive compounds were performed using high-performance liquid chromatography coupled with diode array detector and tandem mass spectrometer (HPLC–DAD–MS/MS) and high-performance liquid chromatography (HPLC) methods. The efficiency of shoot multiplication varied between genotypes from 8.12 to 21.48 shoots per explant. A high reproduction rate (>?20 shoots per explant) was recorded for four lines (PL_45, PL_44, PL_58, DE_2). Plants grown in vitro synthesized oenothein B (11.2–22.3 mg g?1 DW) and caffeic acid derivatives. Plants harvested from field contained the full spectrum of polyphenols characteristic for this species, and oenothein B and quercetin 3-O-glucuronide were the most abundant. The maximal content of oenothein B was determined in the vegetative phase of fireweed, while some flavonoids were found in the highest amount in full blooming phase. The results of analysis of variance indicated significant differences among genotypes in oenothein B, 3-O-caffeoylquinic acid and flavonoids accumulation in four phenological phases. PL_44 plants were characterized by high content of oenothein B and quercetin 3-O-glucuronide as well as a relatively high level of other flavonoids. Based on our phytochemical and micropropagation studies, PL_44 genotype was the best candidate for early selection and further breeding programs.
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation. 相似文献
1 We reviewed worldwide spatial patterns in the food habits of the brown bear Ursus arctos in relation to geographical (latitude, longitude, altitude) and environmental (temperature, snow cover depth and duration, precipitation, primary productivity) variables.
2 We collected data from 28 studies on brown bear diet based on faecal analysis, covering the entire geographical range of this widely distributed large carnivore. We analysed separately four data sets based on different methods of diet assessment.
3 Temperature and snow conditions were the most important factors determining the composition of brown bear diet. Populations in locations with deeper snow cover, lower temperatures and lower productivity consumed significantly more vertebrates, fewer invertebrates and less mast. Trophic diversity was positively correlated with temperature, precipitation and productivity but negatively correlated with the duration of snow cover and snow depth. Brown bear populations from temperate forest biomes had the most diverse diet. In general, environmental factors were more explicative of diet than geographical variables.
4 Dietary spatial patterns were best revealed by the relative biomass and energy content methods of diet analysis, whereas the frequency of occurrence and relative biomass methods were most appropriate for investigating variation in trophic diversity.
5 Spatial variation in brown bear diet is the result of environmental conditions, especially climatic factors, which affect the nutritional and energetic requirements of brown bears as well as the local availability of food. The trade‐off between food availability on the one hand, and nutritional and energetic requirements on the other hand, determines brown bear foraging decisions. In hibernating species such as the brown bear, winter severity seems to play a role in determining foraging strategies. Large‐scale reviews of food habits should be based on several measures of diet composition, with special attention to those methods reflecting the energetic value of food.
The aim of the study was to evaluate the aminoglycoside resistance of Gram-negative bacilli isolated from patients. To the examination 35 strains of Enterobacteriaceae and 18 of non-fermentative bacteria were included. Resistance to aminoglycosides (gentamicin (G), netilmicin (Nt), tobramycin (T), amikacin (A), kanamycin (K), neomycin (N)) was established by disk diffusion method. Interpretation of enzymatic mechanisms was performed by Livermore. The most common enzymes AAC(6')I were found in Enterobacteriaceae group (mostly in E. cloaceae and P. mirabilis) and AAC(3') and in non-fermentative bacteria: AAC(6')I in P. aeruginosa and APH(3')VI and AAC(3')I in A. baumanii. The most frequent phenotype was resistance to six antibiotics (G, Nt, T, A, K, N) Resistance rates were high for gentamicin (>70 %) in both groups and amikacin (88,89 %) in non-fermentatives. 相似文献
Using a combinatorial chemistry approach, a decapaptide library containing the N-terminal fragment of trypsin inhibitor CMTI-III was synthesized by the solid-phase method. The peptide library was screened for trypsin and chymotrypsin inhibitory activity applying the iterative method in solution. Two decapeptides were selected and resynthesized for each enzyme. The association equilibrium constants ((1.1+/-0.2)x10(8) and (7.3+/-1.6)x10(7)) determined for peptides with trypsin inhibitory activity indicate that they are 3-4-fold less active than the CMTI inhibitors. On the other hand, they are significantly more effective as compared with the starting sequence. Two peptides selected as chymotrypsin inhibitors displayed about 10 times higher activity (1.7+/-0.4)x10(7) and (1.1+/-0.2)x10(7), respectively) than those monosubstituted in position P(1) of the CMTI-III analogue. Considering low molecular weight of peptides selected and the lack of conformational constraints in their structures, the results are promising. They are good templates as starting sequences for further selection of small, peptidomimetic proteinase inhibitors. 相似文献
In the present study the authors investigated whether androgens could interact with FSH to induce aromatase and androgen receptor expression in porcine granulosa cells. Dissected whole porcine follicles (small, medium, and large) were incubated for 8 hours in M199 medium supplemented with testosterone (10(-7) M), FSH (100 ng/ml) or both those hormones. After incubation, the follicles were fixed and immunostained to visualise androgen receptor and aromatase. In cultures of granulosa cells isolated from small and large follicles, oestrogen secretion was measured by appropriate RIA. Incubation of follicles with testosterone and FSH increased aromatase immunoreactivity in preantral and early antral (i.e. small) follicles. The immunostaining for androgen receptor was slightly higher in medium follicles, while such hormonal stimulation had no effect on small and large follicles. Moreover, granulosa cells isolated from small follicles cultured with both testosterone and FSH produced more estradiol than control cultures (40 pg vs. 100 pg/10(5) cells). The level was relatively close to that obtained in the culture of control granulosa cells isolated from large preovulatory follicles (105 pg/10(5) cells). These results indicate that testosterone acts synergistically with FSH to increase aromatase expression in the small porcine follicles. 相似文献
Environmental stresses (soil compaction, drought, waterlogging) cause changes in plants’ root system structure, also affecting the growth of above-ground parts. The aim of this study was to estimate phenotypic variation among maize and triticale genotypes in root penetration ability through petrolatum-wax-layer (RPA). Also, the effect of shortage or excess of soil water on dry matter of shoots and roots and morphological changes in root system structure in sensitive and resistant maize and triticale genotypes grown in low or high soil compaction level was evaluated. To estimate RPA index, the petrolatum-wax-layer method (PWL) was used. The strength of three petrolatum-wax concentrations 60, 50 and 40 % was 0.52, 1.07 and 1.58 MPa, respectively. High coefficients of variation (CV) were observed in 0.52 and 1.07 MPa and for maize were 19.2 and 21.7 %, and for triticale, 12.5 and 18.3 %, respectively. The data indicate that the use of PWL technique is an effective screening method, and makes it possible to divide the genotypes into resistant and sensitive groups. The second part of this study investigated a multistress effect of soil compaction combined with drought or waterlogging on root and shoot growth and morphological changes in root system structure of maize and triticale genotypes differing in susceptibility to environmental stresses. Seedlings were grown for 4 weeks in root-boxes under conditions of low (LSC 1.1 g cm?3) or severe (SSC 1.6 g cm?3) soil compaction. Drought or waterlogging stresses were applied for 2 weeks from 14th to 28th day. In comparison to LSC treatment, in SSC treatment the decrease in dry matter of shoots and roots was greater for sensitive genotypes of maize and triticale (Ancora, CHD-147). Soil drought or waterlogging caused greater decrease of dry matter of shoots and roots in seedlings grown in SSC in comparison to LSC. The root penetration index (RPI) was estimated as a ratio of root dry matter in 15–40 cm root-box layer to total root dry matter. On the basis of RPI it was possible to group the genotypes according to their ability to distribute roots in soil profile. In comparison to LSC, SSC exerted a strong influence on the length of seminal and seminal adventitious roots, as well as the number and length of L- and S-type lateral roots developed on seminal and nodal roots. In both species the restriction effect of soil compaction on number and length of roots was more severe in sensitive (Ankora, CHD-147) than in resistant (Tina, CHD-247) genotypes. The restriction in roots propagation was greater in triticale than in maize. Exposure to drought or waterlogging in the case of genotypes grown in LSC and SSC treatments caused a decrease in number and length of particular components of root system structure. In both species the decrease of root number and length in plants grown under waterlogging was greater than under drought. The observed changes in root system were greater in sensitive (Ankora, CHD147) than in resistant (Tina, CHD-247) genotypes. Statistically significant correlations were found between RPA and RPI and also between these indexes and soil compaction, drought and waterlogging susceptibility indexes. This indicates that genotypes resistant to soil compaction were resistant to drought or waterlogging and also that genotypes resistant to drought were resistant to waterlogging. 相似文献