首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2605篇
  免费   131篇
  2736篇
  2023年   12篇
  2022年   48篇
  2021年   71篇
  2020年   48篇
  2019年   76篇
  2018年   105篇
  2017年   75篇
  2016年   125篇
  2015年   155篇
  2014年   159篇
  2013年   218篇
  2012年   242篇
  2011年   221篇
  2010年   139篇
  2009年   96篇
  2008年   172篇
  2007年   177篇
  2006年   153篇
  2005年   106篇
  2004年   78篇
  2003年   100篇
  2002年   67篇
  2001年   3篇
  2000年   11篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1970年   2篇
  1969年   2篇
  1965年   1篇
排序方式: 共有2736条查询结果,搜索用时 15 毫秒
141.
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tt), ELPs are soluble, but insoluble when the temperature exceeds Tt. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.  相似文献   
142.
Background/aimThe aim of our study was to check how MGMT methylation status together with known factors influenced the risk of colon cancer development.Materials and methodsWe examined patients with colon polyps. Information concerning gender, age, lifestyle, diet, anthropometry and medical information, including cancer and family history of cancer, was analyzed. Polymorphism variety of MGMT gene was investigated in another study. Genetic analysis for MGMT methylation assessment was performed for polyp tissue samples from 143 patients.ResultsPositive methylation MGMT status was found in 55 patients. There was no correlation between gender and MGMT methylation status (p = 0.43). We did not find correlation between patients younger and older than 60 (p = 0.87). There was no correlation between smoking and MGMT methylation status (p = 0.36). We did not find correlation between BMI and MGMT methylation status (p = 0.86). We did not find correlation between MGMT methylation status and colon cancer in familial history (p = 0.45).ConclusionOur study showed no correlations between methylation status of MGMT polymorphisms and clinical features like age, gender, polyp localization, smoking status, or obesity. It has been shown previously that MGMT methylation status may show nonspecific methylation in colon polyps. Gene methylation status in adenoma tissues has also been associated by other authors with the adenoma's size, histology, and degree of atypia. In our study, we evaluated the gene methylation status in colon polyps and found no association with adenoma characteristics. The present study showed no correlation for MGMT methylation in polyps in different regions of colon.  相似文献   
143.
Molecular chaperones recognize and bind destabilized proteins. This can be especially important for proteins whose stability is reduced by mutations. We focused our study on a major chaperone system, RAC-Ssb, which assists folding of newly synthesized polypeptides in the yeast cytosol. A sensitive phenotypic assay, the red color of Ade2 mutants, was used to screen for variants with metabolic activity dependent on RAC-Ssb. None of the Ade2 mutants were found to exhibit lower metabolic activity after inactivation of RAC-Ssb. In order to explicitly test the relationship between protein instability and activity of chaperones, a series of temperature sensitive Ade2 mutants were tested in the presence or absence of RAC-Ssb. The growth of Ade2(ts) mutants at elevated temperatures was enhanced if chaperones were missing. Similar pattern was found for thermally sensitive mutants of several other genes. Because RAC-Ssb normally supports the folding of proteins, it appears paradoxical that catabolic activity of mutants is reduced when these chaperones are present. We suggest that under non-stressful conditions, molecular chaperones are tuned to support folding of native proteins, but not that of mutated ones.  相似文献   
144.
In this study, chemical synthesis of the selective chromogenic/fluorogenic substrates for proteinase 3 is described. The substrates’ sequence was obtained using combinatorial chemistry methods. Deconvolution of the tripeptide library against proteinase 3 with general formula ABZ-X3-X2-X1-ANB-NH2 yielded the active sequence. Selected peptide was further modified on its C terminus to investigate the impact of chromophore moiety modification on enzyme-substrate interaction. To determine specificity, activity of selected substrates was characterized against proteinase 3 and neutrophil elastase. Finally, the peptide ABZ-Tyr-Tyr-Abu-ANB-NH2 displayed the highest value of specificity constant (kcat/KM = 189 × 103 M−1 s−1) for proteinase 3. To the best of our knowledge, this is the first short peptide that undergoes selective proteolysis by proteinase 3 and displays no significant hydrolysis in the presence of human neutrophil elastase and cathepsin G.  相似文献   
145.
146.

Background

Neointima forming after stent implantation consists of vascular smooth muscle cells (VSMCs) in 90%. Growth factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A play an important role in VSMC proliferation and migration to the tunica intima after arterial wall injury. The aim of this paper was an analysis of functional polymorphisms in genes encoding TGF-β1, PDGFB, EGF, bFGF and VEGF-A in relation to in-stent restenosis (ISR).

Materials and Methods

265 patients with a stable coronary artery disease (SCAD) hospitalized in our center in the years 2007–2011 were included in the study. All patients underwent stent implantation at admission to the hospital and had another coronary angiography performed due to recurrence of the ailments or a positive result of the test assessing the coronary flow reserve. Angiographically significant ISR was defined as stenosis >50% in the stented coronary artery segment. The patients were divided into two groups–with angiographically significant ISR (n = 53) and without significant ISR (n = 212). Additionally, the assessment of late lumen loss (LLL) in vessel was performed. EGF rs4444903 polymorphism was genotyped using the PCR-RFLP method whilst rs1800470 (TGFB1), rs2285094 (PDGFB) rs308395 (bFGF) and rs699947 (VEGF-A) were determined using the TaqMan method.

Results

Angiographically significant ISR was significantly less frequently observed in the group of patients with the A/A genotype of rs1800470 polymorphism (TGFB1) versus patients with A/G and G/G genotypes. In the multivariable analysis, LLL was significantly lower in patients with the A/A genotype of rs1800470 (TGFB1) versus those with the A/G and G/G genotypes and higher in patients with the A/A genotype of the VEGF-A polymorphism versus the A/C and C/C genotypes. The C/C genotype of rs2285094 (PDGFB) was associated with greater LLL compared to C/T heterozygotes and T/T homozygotes.

Conclusions

The polymorphisms rs1800470, rs2285094 and rs6999447 of the TGFB1, PDGFB and VEGF-A genes, respectively, are associated with LLL in patients with SCAD treated by PCI with a metal stent implantation.  相似文献   
147.
EfeUOB-like tripartite systems are widespread in bacteria and in many cases they are encoded by genes organized into iron-regulated operons. They consist of: EfeU, a protein similar to the yeast iron permease Ftrp1; EfeO, an extracytoplasmic protein of unknown function and EfeB, also an extracytoplasmic protein with heme peroxidase activity, belonging to the DyP family. Many bacterial EfeUOB systems have been implicated in iron uptake, but a prefential iron source remains undetermined. Nevertheless, in the case of Escherichia coli, the EfeUOB system has been shown to recognize heme and to allow extracytoplasmic heme iron extraction via a deferrochelation reaction. Given the high level of sequence conservations between EfeUOB orthologs, we hypothesized that heme might be the physiological iron substrate for the other orthologous systems. To test this hypothesis, we undertook characterization of the Staphylococcus aureus FepABC system. Results presented here indicate: i) that the S. aureus FepB protein binds both heme and PPIX with high affinity, like EfeB, the E. coli ortholog; ii) that it has low peroxidase activity, comparable to that of EfeB; iii) that both FepA and FepB drive heme iron utilization, and both are required for this activity and iv) that the E. coli FepA ortholog (EfeO) cannot replace FepA in FepB-driven iron release from heme indicating protein specificity in these activities. Our results show that the function in heme iron extraction is conserved in the two orthologous systems.  相似文献   
148.
149.
A series of amine-alkyl derivatives of 5-arylidenehydantoin 3–21 was evaluated for their ability to improve antibiotic effectiveness in two strains of Gram-negative Enterobacter aerogenes: the reference strain (ATCC-13048) and the chloramphenicol-resistant derivative over-producing the AcrAB-TolC efflux pump (CM-64). Three antibiotics, chloramphenicol, nalidixic acid and sparfloxacin were used as markers of efflux pump activity. New compounds (5–16) were obtained within 3–4 step synthesis using Knoevenagel condensation, Mitsunobu reaction and microwave aided N-alkylation. Molecular modeling based structure–activity relationship (SAR) studies were performed. The most active compounds: (Z)-5-(4-(diethylamino)benzylidene)-3-(2-hydroxy-3-(4-(2-hydroxyethyl)piperazin-1-yl)propyl)imidazolidine-2,4-dione (14) and (Z)-5-(2,4-dimethoxybenzylidene)-3-(2-hydroxy-3-(isopropylamino)propyl)imidazolidine-2,4-dione (15) induced fourfold decrease of minimal inhibition concentration (MIC) of all tested antibiotics in the strain CM-64 overexpressing the AcrAB-TolC pump.  相似文献   
150.
5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号