首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   51篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   11篇
  2019年   7篇
  2018年   31篇
  2017年   15篇
  2016年   19篇
  2015年   38篇
  2014年   43篇
  2013年   69篇
  2012年   76篇
  2011年   84篇
  2010年   47篇
  2009年   44篇
  2008年   70篇
  2007年   61篇
  2006年   58篇
  2005年   78篇
  2004年   78篇
  2003年   56篇
  2002年   57篇
  2001年   15篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   8篇
  1995年   9篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   8篇
  1981年   2篇
  1980年   8篇
  1979年   3篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1944年   1篇
排序方式: 共有1105条查询结果,搜索用时 234 毫秒
31.
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.  相似文献   
32.
The covalent transfer of heavy chains (HCs) from inter-α-inhibitor (IαI) to hyaluronan (HA) via the protein product of tumor necrosis factor-stimulated gene-6 (TSG-6) forms the HC-HA complex, a pathological form of HA that promotes the adhesion of leukocytes to HA matrices. The transfer of HCs to high molecular weight (HMW) HA is a reversible event whereby TSG-6 can shuffle HCs from one HA molecule to another. Therefore, HMW HA can serve as both an HC acceptor and an HC donor. In the present study, we show that transfer of HCs to low molecular weight HA oligosaccharides is an irreversible event where subsequent shuffling does not occur, i.e. HA oligosaccharides from 8 to 21 monosaccharide units in length can serve as HC acceptors, but are unable to function as HC donors. We show that the HC-HA complex is present in the synovial fluid of mice subjected to systemic and monoarticular mouse models of rheumatoid arthritis. Furthermore, we demonstrate that HA oligosaccharides can be used, with TSG-6, to irreversibly shuffle HCs from pathological, HMW HC-HA to HA oligosaccharides, thereby restoring HC-HA matrices from the inflamed joint to their normal state, unmodified with HCs. This process was also effective for HC-HA in the synovial fluid of human rheumatoid arthritis patients (in vitro).  相似文献   
33.
The aim of this work was to gather information about the origin and genetic characterization of the Central European Hucul horse based on 71 horses using 17 microsatellites and the D‐loop region of mtDNA. Their genetic relationship to the Polish Konik (N = 7), German (N = 4) and Hungarian wild Przewalski horses (N = 4) and 200 horse sequences from GenBank was also analysed. Both microsatellite and mtDNA analysis showed a high genetic variation in the Hucul. A total of 130 alleles were detected, the mean number of observed alleles per microsatellite was 7.647, and the number of effective alleles was 4.401. The average observed and expected heterozygosity were 0.706 and 0.747, respectively. The high heterozygosity values and Wright's fixation index (FIS) (?0.128) indicated a low level of inbreeding, low or no selection pressure, and large number of alleles. mtDNA analysis revealed 18 haplotypes for the Hucul population with a total of 23 variable sites. Haplotype and nucleotide diversities were 0.935 ± 0.011 and 0.022 ± 0.012, respectively. Neutrality tests (Tajima's D and Fu's Fs) were non‐significant, and mismatch distribution was ragged, indicating that the Hucul population is in genetic equilibrium. The most frequent mtDNA D‐loop region belonged to haplogroup A (48%), which was also present in Przewalski Wild horse samples, while Polish Konik samples belonged to three haplotypes and C, F, and G haplogroups. Large and significant pairwise ΦST values along with a small number of common haplotypes indicated a low level of gene flow and lack of genetic structure among the three studied breeds (Hucul, Konik, and Przewalski Wild horse). The present work contributes to our knowledge of the genetic diversity of the Hucul horse and helps to define its genetic conservation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 54–65.  相似文献   
34.
Novel N-hydroxyalkyl-2-aminophenothiazines implying a tetrazole moiety at the alkyl chain have been synthesized by hydroboration–oxidation of dienes followed by Buchwald–Hartwig cross-coupling reaction. Also, some sulfoxide and sulfone derivatives have been prepared by selective oxidations. MDR inhibition studies on rat hepatocyte cell culture revealed that some derivatives exhibit marked biological efficacy exceeding that of the standard verapamil (e.g., 3h, 4h, 16). Selected derivatives were subjected to chemical resolution to provide both enantiomers which were shown of similar activity on P-gp interaction measurements. The new compounds exhibited no toxicity.  相似文献   
35.
36.

Objective

Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1) receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse.

Methods

Complete Freund’s Adjuvant was injected intraplantarly and into the tail of Tac1−/−, Tac4−/−, Tacr1−/− (NK1 receptor deficient) and Tac1−/−/Tac4−/− mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed.

Results

Mechanical hyperalgesia was significantly reduced from day 11 in Tac4−/− and Tacr1−/− animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage) and IL-1β concentration in the joint homogenates were significantly smaller in Tac4−/− and Tac1−/−/Tac4−/− mice.

Conclusions

Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.  相似文献   
37.
The secure base and safe haven effects of the attachment figure are central features of the human attachment theory. Recently, conclusive evidence for human analogue attachment behaviours in dogs has been provided, however, the owner’s security-providing role in danger has not been directly supported. We investigated the relationship between the behavioural and cardiac response in dogs (N = 30) while being approached by a threatening stranger in separation vs. in the presence of the owner, presented in a balanced order. Non-invasive telemetric measures of heart rate (HR) and heart rate variability (HRV) data during the threatening approaches was compared to periods before and after the encounters. Dogs that showed distress vocalisation during separation (N = 18) and that growled or barked at the stranger during the threatening approach (N = 17) were defined as behaviourally reactive in the given situation. While characteristic stress vocalisations were emitted during separations, the absence of the owner did not have an effect on dogs’ mean HR, but significantly increased the HRV. The threatening approach increased dogs’ mean HR, with a parallel decrease in the HRV, particularly in dogs that were behaviourally reactive to the encounter. Importantly, the HR increase was significantly less pronounced when dogs faced the stranger in the presence of the owner. Moreover, the test order, whether the dog encountered the stranger first with or without its owner, also proved important: HR increase associated with the encounter in separation seemed to be attenuated in dogs that faced the stranger first in the presence of their owner. We provided evidence for human analogue safe haven effect of the owner in a potentially dangerous situation. Similarly to parents of infants, owners can provide a buffer against stress in dogs, which can even reduce the effect of a subsequent encounter with the same threatening stimuli later when the owner is not present.  相似文献   
38.
Phosphorylation is the most widely studied posttranslational modification. Its role within the cell has been the focus of numerous large‐scale studies. Recently there is growing evidence on the biological significance of extracellular phosphorylation. The analysis of these phosphopeptides is complicated by the abundance of glycosylation in the extracellular space, since glycopeptides are also enriched by the methods used for phosphopeptide isolation. Thus, we optimized IMAC for phosphorylation analysis of secreted proteins, specifically in human serum. Selectivity and efficiency of different enrichment conditions used in earlier large‐scale phosphoproteomic studies were evaluated. We found that minimizing hydrophilic interactions in the enrichment allowed selective phosphopeptide isolation. Using a two‐step IMAC enrichment protocol under these conditions led to the identification of ~100 phosphorylation sites from the tryptic digest of as little as 40 μL human serum.  相似文献   
39.
Antipredator responses often involve changes in several phenotypic traits and these changes interactively influence fitness. However, gaining insight into how the overall fitness effect of the overall response comes about is notoriously difficult. One promising avenue is to manipulate a single defensive trait and observe how that modifies fitness as well as the expression of other inducible responses. In chemically‐defended animals, toxins are likely to be costly to produce but it is still unknown how their depletion influences other characteristics. In the present study, we artificially depleted bufadienolide toxin stores in common toad (Bufo bufo) tadpoles, and assessed the effect of this with respect to the interaction with predator presence and limited food availability. We found that toxin depletion in tadpoles did not significantly affect any of the measured life‐history traits. Tadpoles in the predator treatment exhibited an elevated development rate, although this was only apparent when food availability was limited. Also, body mass at metamorphosis was lower in tadpoles exposed to chemical cues indicating a predation threat and when food availability was limited. These results provide evidence that, in larval common toads, the expression of inducible defences may incur fitness costs, whereas chemical defences are either expressed constitutively or, if inducible, elevated toxin production has negligible costs.  相似文献   
40.
The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.Energy security and climate change as global problems urge increased efforts to use plants as renewable energy sources both for power generation and transportation fuel production. Selected wood species, such as willows (Salix spp.), can be cultivated as short-rotation coppice for the rapid accumulation of biomass and reduction of CO2 emission. Coppicing reinvigorates shoot growth, resulting in a special woody plant life cycle that differs from natural tree development, which takes decades. In this cultivation system, small stem cuttings are planted at high densities (15,000–25,000 ha−1). In the soil, these dormant wood cuttings first produce roots and shoots that emerge from reactivated buds. During the first year, the growing shoots mature to woody stems. In the winter, these stems are cut back, and in the following spring, the cut stumps develop multiple shoots. The short-rotation coppice plantations are characterized by a very short, 2- to 3-year rotation, and the most productive varieties can produce up to 15 tons of oven-dried wood per hectare per year (Cunniff and Cerasuolo, 2011). The high-density willow plantations can also be efficiently used for heavy metal or organic phytoremediation, as reviewed by Marmiroli et al. (2011).The biomass productivity of shrub willows is largely dependent on coppicing capability, early vigorous growth, shoot growth rate and final stem height, root system size, photosynthetic efficiency, formation and composition of woody stems, water and nutrient use, as well as abiotic and biotic stress tolerance. Genetic improvement of all these traits can be based on broad natural genetic resources represented by more than 400 species in the genus Salix. More than 200 species have hybrid origins, and ploidy levels vary from diploid up to dodecaploid (Suda and Argus, 1968; Newsholme, 1992). In addition to molecular marker-assisted clone selection, intraspecific and interspecific crosses have been shown to further extend genetic variability in breeding programs for biomass yield (Karp et al., 2011).During natural diversification and artificial crossings of Salix spp., the willow genomes frequently undergo polyploidization, resulting in triploid or tetraploid allopolyploids. In triploid hybrids, both heterosis and ploidy can contribute to the improved biomass yield (Serapiglia et al., 2014). While the alloploid triploids have attracted considerable attention in willow improvement, the potentials of autotetraploid willow genotypes have not been exploited so far. As shown for other short-rotation wood species (poplar [Populus spp.], black locust [Robinia pseudoacacia], Paulownia spp., and birch [Betula spp.]), doubling the chromosome set by colchicine treatment can cause significant changes in organ morphology or growth parameters (Tang et al., 2010; Cai and Kang, 2011; Harbard et al., 2012; Mu et al., 2012; Wang et al., 2013a, 2013b). In several polyploidization protocols, the in vitro cultured tissues are exposed to different doses of colchicine or other inhibitors of mitotic microtubule function, and plantlets are differentiated from polyploid somatic cells (Tang et al., 2010; Cai and Kang, 2011). Alternatively, seeds or apical meristems of germinating seedlings can be treated with a colchicine solution (Harbard et al., 2012). Allotetraploids of poplar were produced by zygotic chromosome doubling that was induced by colchicine and high-temperature treatment (Wang et al., 2013a).Since tetraploid willow plants with 2n = 4x = 76 chromosomes are expected to represent novel genetic variability, especially for organ development and physiological parameters, a polyploidization project was initiated that was based on a highly productive diploid energy willow (S. viminalis var. Energo). Colchicine treatment of reactivated axillary buds of the in vitro-grown energy willow plantlets resulted in autotetraploid shoots and, subsequently, plants. For comparison of diploid and tetraploid variants of willow plants, digital imaging of green organs and roots was used for phenotyping. Among the tetraploid lines, genotypes were identified with improved biomass production, better photosynthetic parameters, and altered organ structure and hormone composition. The new tetraploid willow variants produced can serve as a unique experimental material to uncover key factors in biomass production in this short-rotation energy plant. In the future, these plants can also serve as crossing partners of diploid lines for the production of novel triploid energy willow genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号