首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   51篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   11篇
  2019年   7篇
  2018年   31篇
  2017年   15篇
  2016年   19篇
  2015年   38篇
  2014年   43篇
  2013年   69篇
  2012年   76篇
  2011年   84篇
  2010年   47篇
  2009年   44篇
  2008年   70篇
  2007年   61篇
  2006年   58篇
  2005年   78篇
  2004年   78篇
  2003年   56篇
  2002年   57篇
  2001年   15篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   8篇
  1995年   9篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   8篇
  1981年   2篇
  1980年   8篇
  1979年   3篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1944年   1篇
排序方式: 共有1105条查询结果,搜索用时 250 毫秒
141.
Nucleosides are neuromodulators that have a wide range of biological roles in the brain. In order to better understand the function of nucleosides in the human central nervous system (CNS), we constructed a nucleoside map showing the concentration of various nucleosides and their metabolites using post mortem samples from 61 human brain areas and 4 spinal cord areas. We evaluated in vivo tissue levels of four nucleosides (uridine, inosine, guanosine, and adenosine) and three of their metabolites (uracil, hypoxanthine, and xanthine). The concentrations of nucleosides were unevenly distributed across different brain regions, where the highest levels were found in the cerebral cortex and basal ganglia, whereas the lowest concentrations were located in the locus coeruleus, the zona incerta, the substantia nigra, and the inferior colliculus. The regional differences in nucleoside levels in the CNS may reflect the distinct physiological functions adopted by these compounds in different brain areas.  相似文献   
142.
Progesterone-induced blocking factor (PIBF) induces Th2-dominant cytokine production. Western blotting and EMSA revealed phosphorylation as well as nuclear translocation of STAT6 and inhibition of STAT4 phosphorylation in PIBF-treated cells. The silencing of STAT6 by small interfering RNA reduced the cytokine effects. Because the activation of the STAT6 pathway depends on the ligation of IL-4R, we tested the involvement of IL-4R in PIBF-induced STAT6 activation. Although PIBF does not bind to IL-4R, the blocking of the latter with an Ab abolished PIBF-induced STAT6 activation, whereas the blocking of the IL-13R had no effect. PIBF activated suppressor of cytokine signaling-3 and inhibited IL-12-induced suppressor of cytokine signaling-1 activation. The blocking of IL-4R counteracted all the described effects, suggesting that the PIBF receptor interacts with IL-4R alpha-chain, allowing PIBF to activate the STAT6 pathway. PIBF did not phosphorylate Jak3, suggesting that the gamma-chain is not needed for PIBF signaling. Confocal microscopic analysis revealed a colocalization and at 37 degrees C a cocapping of the FITC PIBF-activated PIBF receptor and PE anti-IL-4R-labeled IL-4R. After the digestion of the cells with phosphatidylinositol-specific phospholipase C, the STAT6-activating effect of PIBF was lost, whereas that of IL-4 remained unaltered. These data suggest the existence of a novel type of IL-4R composed of the IL-4R alpha-chain and the GPI-anchored PIBF receptor.  相似文献   
143.
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3'-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition.  相似文献   
144.
Histidine-containing peptide fragments of prion protein are efficient ligands to bind various transition metal ions and they have high selectivity in metal binding. The metal ion affinity follows the order: Pd(II)>Cu(II)>Ni(II)Zn(II)>Cd(II) approximately Co(II)>Mn(II). The high selectivity of metal binding is connected to the involvement of both imidazole and amide nitrogen atoms in metal binding for Pd(II), Cu(II) and Ni(II), while only the monodentate N(im)-coordination is possible with the other metal ions. The stoichiometry and binding mode of palladium(II) complexes show great variety depending on the metal ion to ligand ratio, pH and especially the presence of coordinating donor atoms in the side chains of peptide fragments. It is also clear from our data that the peptide fragments containing histidine outside the octarepeat (His96, His111 and His187) are more efficient ligands than the monomer peptide fragments of the octarepeat domain.  相似文献   
145.
Artificial formation of flash-photoactive oligomeric protochlorophyllide complexes was found in etiolated pea (Pisum sativum L. cv. Zsuzsi) epicotyl homogenates containing glycerol (40% v/v) and sucrose (40% m/v). The 77 K fluorescence emission spectra indicated that the ratio of the 644 and 655 nm emitting forms to the 636 nm form increased during 3 to 5-day incubation in the dark at -14 degrees C. Electron micrographs showed the presence of well-organized prolamellar bodies in the homogenates. The same phenomena were found when the homogenates were frozen into liquid nitrogen and thawed to room temperature in several cycles. Similar treatments of intact epicotyl pieces caused significant membrane destructions. In homogenates, the in vitro produced 644 and 655 nm emitting protochlorophyllide forms were flash-photoactive; the extent of phototransformation increased compared to that in native epicotyls. The newly appeared 692 nm chlorophyllide band showed a blue shift (similar to the Shibata shift in leaves), however this process took place only partially due to the effect of the isolation medium. These results prove that the in vitro accumulated 644 and 655 nm protochlorophyllide forms were produced from the flash-photoactive 636 nm emitting monomeric NADPH:protochlorophyllide oxidoreductase units via aggregation, in connection with structure stabilization properties of glycerol and sucrose.  相似文献   
146.
Tóth K  Brun N  Langowski J 《Biochemistry》2006,45(6):1591-1598
Using a previously described FRET technique, we measured the distance between the ends of DNA fragments on which nucleosomes were reconstituted from recombinant and native histones. This distance was analyzed in its dependence on the DNA fragment length, concentration of mono- and divalent counterions, presence of linker histone H1, and histone modifications. We found that the linker DNA arms do not cross under all conditions studied but diverge slightly as they leave the histone core surface. Histone H1 leads to a global approach of the linker DNA arms, confirming the notion of a "stem structure". Increasing salt concentration also leads to an approach of the linker DNAs. To study the effect of acetylation, we compared chemically acetylated recombinant histones with histones prepared from HeLa cells, characterizing the sites of acetylation by mass spectroscopy. Nucleosomes from chemically acetylated histones have few modifications in the core domain and form nucleosomes normally. Acetylating all histones or selectively only H3 causes an opening of the nucleosome structure, indicated by the larger distances between the linker DNA ends. Selective acetylation of H4 distances the linker ends for short fragments but causes them to approach each other for fragments longer than 180 bp.  相似文献   
147.
Knowledge of relatedness between pairs of individuals plays an important role in many research areas including evolutionary biology, quantitative genetics, and conservation. Pairwise relatedness estimation methods based on genetic data from highly variable molecular markers are now used extensively as a substitute for pedigrees. Although the sampling variance of the estimators has been intensively studied for the most common simple genetic relationships, such as unrelated, half- and full-sib, or parent-offspring, little attention has been paid to the average performance of the estimators, by which we mean the performance across all pairs of individuals in a sample. Here we apply two measures to quantify the average performance: first, misclassification rates between pairs of genetic relationships and, second, the proportion of variance explained in the pairwise relatedness estimates by the true population relatedness composition (i.e., the frequencies of different relationships in the population). Using simulated data derived from exceptionally good quality marker and pedigree data from five long-term projects of natural populations, we demonstrate that the average performance depends mainly on the population relatedness composition and may be improved by the marker data quality only within the limits of the population relatedness composition. Our five examples of vertebrate breeding systems suggest that due to the remarkably low variance in relatedness across the population, marker-based estimates may often have low power to address research questions of interest.  相似文献   
148.
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.  相似文献   
149.
150.
The ATP-binding cassette (ABC) transporter ABCG2 plays an important role in tissue detoxification and confers multidrug resistance to cancer cells. Identification of expressional and functional cellular regulators of this multidrug transporter is therefore intensively pursued. The PI3-kinase/Akt signaling axis has been implicated as a key element in regulating various cellular functions, including the expression and plasma membrane localization of ABCG2. Here we demonstrate that besides inhibiting their respective target kinases, the pharmacological PI3-kinase inhibitor LY294002 and the downstream mTOR kinase inhibitor rapamycin also directly inhibit ABCG2 function. In contrast, wortmannin, another commonly used pharmacological inhibitor of PI3-kinase does not interact with the transporter. We suggest that direct functional modulation of ABCG2 should be taken into consideration when pharmacological agents are applied to dissect the specific role of PI3-kinase/Akt/mTOR signaling in cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号