全文获取类型
收费全文 | 2617篇 |
免费 | 138篇 |
国内免费 | 2篇 |
专业分类
2757篇 |
出版年
2023年 | 12篇 |
2022年 | 25篇 |
2021年 | 47篇 |
2020年 | 27篇 |
2019年 | 32篇 |
2018年 | 38篇 |
2017年 | 32篇 |
2016年 | 54篇 |
2015年 | 96篇 |
2014年 | 115篇 |
2013年 | 173篇 |
2012年 | 156篇 |
2011年 | 181篇 |
2010年 | 93篇 |
2009年 | 111篇 |
2008年 | 160篇 |
2007年 | 162篇 |
2006年 | 165篇 |
2005年 | 158篇 |
2004年 | 183篇 |
2003年 | 160篇 |
2002年 | 141篇 |
2001年 | 31篇 |
2000年 | 17篇 |
1999年 | 33篇 |
1998年 | 35篇 |
1997年 | 25篇 |
1996年 | 21篇 |
1995年 | 21篇 |
1994年 | 18篇 |
1993年 | 21篇 |
1992年 | 16篇 |
1991年 | 22篇 |
1990年 | 15篇 |
1989年 | 15篇 |
1988年 | 15篇 |
1987年 | 24篇 |
1986年 | 10篇 |
1985年 | 15篇 |
1984年 | 19篇 |
1983年 | 11篇 |
1982年 | 12篇 |
1981年 | 7篇 |
1980年 | 3篇 |
1979年 | 6篇 |
1976年 | 3篇 |
1972年 | 2篇 |
1971年 | 2篇 |
1969年 | 2篇 |
1968年 | 3篇 |
排序方式: 共有2757条查询结果,搜索用时 15 毫秒
71.
Masaki Kurogochi Takahiko Matsushista Maho Amano Jun-ichi Furukawa Yasuro Shinohara Masato Aoshima Shin-Ichiro Nishimura 《Molecular & cellular proteomics : MCP》2010,9(11):2354-2368
Despite increasing importance of protein glycosylation, most of the large-scale glycoproteomics have been limited to profiling the sites of N-glycosylation. However, in-depth knowledge of protein glycosylation to uncover functions and their clinical applications requires quantitative glycoproteomics eliciting both peptide and glycan sequences concurrently. Here we describe a novel strategy for the multiplexed quantitative mouse serum glycoproteomics based on a specific chemical ligation, namely, reverse glycoblotting technique, focusing sialic acids and multiple reaction monitoring (MRM). LC-MS/MS analysis of de-glycosylated peptides identified 270 mouse serum peptides (95 glycoproteins) as sialylated glycopeptides, of which 67 glycopeptides were fully characterized by MS/MS analyses in a straightforward manner. We revealed the importance of a fragment ion containing innermost N-acetylglucosamine (GlcNAc) residue as MRM transitions regardless the sequence of the peptides. Versatility of the reverse glycoblotting-assisted MRM assays was demonstrated by quantitative comparison of 25 targeted glycopeptides from 16 proteins between mice with homo and hetero types of diabetes disease model.Clinical proteomics focusing on the identification and validation of biomarkers and the discovery of proteins as therapeutic targets is an emerging and highly important area of proteomics. Biomarkers are measurable indicators of a specific biological state (particularly one relevant to the risk of contraction) and the presence or the stage of disease, and are thus expected to be useful for the prediction, detection, and diagnosis of disease as well as to follow the efficacy, toxicology, and side effects of drug treatment, and to provide new functional insights into biological processes.At present, proteomics methods based on mass spectrometry (MS) have emerged as the preferred strategy for discovery of diagnostic, prognostic, and therapeutic protein biomarkers. Most biomarker discovery studies use unbiased, “identified-based” approaches that rely on high performance mass spectrometers and extensive sample processing. Semiquantitative comparisons of protein relative abundance between disease and control patient samples are used to identify proteins that are differentially expressed and, thus, to populate lists of potential biomarkers. De novo proteomics discovery experiments often result in tens to hundreds of candidate biomarkers that must be subsequently verified in serum. However, despite the large numbers of putative biomarkers, only a small number of them are passed through the development and validation process into clinical practice, and their rate of introduction is declining. The first non-standard abbreviation (MS above is standard) must be footnoted the same as the abbreviation footnote, and MRM must be the first abbreviation in the list because it is the one footnoted. After that the order does not matter.Targeted proteomics using multiple reaction monitoring (MRM)1 is emerging as a technology that complements the discovery capabilities of shotgun strategies as well as an alternative powerful novel MS-based approach to measure a series of candidate biomarkers (1–7). Therefore, MRM is expected to provide a powerful high throughput platform for biomarker validation, although clinical validation of novel biomarkers has been traditionally relying on immunoassays (8, 9). MRM exploits the unique capabilities of triple quadrupoles (QQQ) MS for quantitative analysis. In MRM, the first and the third quadrupoles act as filters to specifically select predefined m/z values corresponding to the peptide precursor ion and specific fragment ion of the peptide, whereas the second quadrupole serves as collision cell. Several such transitions (precursor/fragment ion pairs) are monitored over time, yielding a set of chromatographic traces with retention time and signal intensity for a specific transition as coordinates. These measurements have been multiplexed to provide 30 or more specific assays in one run. Such methods are slowly gaining acceptance in the clinical laboratory for the routine measurement of endogenous metabolites (10) (e.g. in screening newborns for a panel of inborn errors of metabolism) some drugs (11) (e.g. immunosuppressants), and the component analysis of sugars (12).One of the profound challenges in clinical proteomics is the need to handle highly complex biological mixtures. This complexity presents unique analytical challenges that are further magnified with the use of clinical serum/plasma samples to search for novel biomarkers of human disease. The serum proteome is composed of tens of thousands of unique proteins, of which concentrations may exceed 10 orders of magnitude. Protein glycosylation, one of the most common post-translational modifications, generates tremendous diversity, complexity, and heterogeneity of gene products. It changes the biological and physical properties of proteins, which include functions as signals or ligands to control their distribution, antigenicity, metabolic fate, stability, and solubility. Protein glycosylation, in particular by N-linked glycans, is prevalent in proteins destined for extracellular environments. These include proteins on the extracellular side of the plasma membrane, secreted proteins, and proteins contained in body fluids (such as blood serum, cerebrospinal fluid, urine, breast milk, saliva, lung lavage fluid, or pancreatic juice). Considering that such body fluids are most easily accessible for diagnostic and therapeutic purposes, it is not surprising that many clinical biomarkers and therapeutic targets are glycoproteins. These include, for example, cancer antigen 125 (CA125) in ovarian cancer, human epidermal growth factor receptor 2 (Her2/neu) in breast cancer, and prostate-specific antigen (PSA) in prostate cancer. In addition, changes in the extent of glycosylation and the structure of N-glycans or O-glycans attached to proteins on the cell surface and in body fluids have been shown to correlate with cancer and other disease states, highlighting the clinical importance of this modification as an indicator or effector of pathologic mechanisms (13–16). Thus, clinical proteomic platforms should have capability to provide protein glycosylation information as well as sufficient analytical depth to reliably detect and quantify specific proteins with sufficient accuracy and throughput.To improve the detection limits to the required sensitivities, one needs to dramatically reduce the complexity of the sera samples. For focused glycoproteomics, several techniques using lectins or antibodies enabling the large-scale identification of glycoproteins have recently been developed (17–19). Notably, Zhang et al. reported a method for the selective isolation of peptides based on chemical oxidation of the carbohydrate moiety and subsequent conjugation to a solid support using hydrazide chemistry (20–26). However, it is not possible to provide any structural information about N-glycans because the MS analysis is performed on peptides of which N-glycans are removed preferentially by treating with peptide N-glycanase (PNGase). In 2007, we developed a method for rapid enrichment analysis of peptides bearing sialylated N-glycans on the MALDI-TOF-MS platform (27). The method involves highly selective oxidation of sialic acid residues of glycopeptides to elaborate terminal aldehyde group and subsequent enrichment by chemical ligation with a polymer reagent, namely, reverse glycoblotting technique inspired from an original concept of glycoblotting method (28). This method, in principle, is capable identifying both glycan and peptide sequences concurrently. Recently, Nilsson et al. reported that glycopeptides from human cerebrospinal fluid can be enriched on the basis of the same principle as the reverse glycoblotting protocol, and captured glycopeptides were analyzed with ESI FT-ICR MS (29). Because it is well known that sialic acids play important roles in various biological processes including cell differentiation, immune response, and oncogenesis (30–34), our attention has been directed toward feasibility of the reverse glycoblotting technique in quantitative analysis of the specific glycopeptides carrying sialic acid(s) by combining with multiplexed MRM-based MS. 相似文献
72.
Hitoshi Ashida Kazuki Kanazawa Masato Natake 《Bioscience, biotechnology, and biochemistry》2013,77(8):2007-2014
Linoleic acid, and its hydroperoxides and secondary autoxidation products were orally administered to rats (400 mg/rat). Their effects on hepatic lipid metabolism were examined. Linoleic acid reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase. It decreased the CoASH level and caused the accumulation of long-chain acyl-CoA. Hydroperoxides changed the compositions of unsaturated fatty acids in the hepatic lipids and lowered the content of neutral lipids. Secondary products stimulated carnitine palmitoyltransferase and decreased the content of neutral lipids. They reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase, and the levels of CoASH and acetyl-CoA. Thus, the effect of secondary products was apparently different from those of linoleic acid and its hydroperoxides. 相似文献
73.
Masato Ikeda Aya Miyamoto Sumire Mutoh Yuko Kitano Mei Tajima Daisuke Shirakura Manami Takasaki Satoshi Mitsuhashi Seiki Takeno 《Applied and environmental microbiology》2013,79(15):4586-4594
To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter). 相似文献
74.
75.
76.
77.
The relationships among X591, Cyt-b559 and C-550 in the primaryphotoact of PS-II were analysed by examining the effects ofvarious inhibitory substances and treatments on the light-inducedabsorbance changes of these components. The results were fully explainable by the scheme previouslypresented by Huzisige, in which two photoreactions are involvedin PS-II. Our conclusion is that X591 acts as the electron acceptorfor one of the photoreactions in PS-II. (Received October 23, 1978; ) 相似文献
78.
Takao Suzuki Maki Moritani Masayasu Yoshino Mitsuhiro Kagami Shoji Iwasaki Kouichi Nishimura Masahiko Akamatsu Masato Kobori Hitoshi Matsushime Masao Kotoh Kiyoshi Furuichi Mitsuo Itakura 《Mammalian genome》2008,19(1):15-25
When the homozygous active form of porcine TGF-β1 transgene (Tgf/Tgf) (under control of the rat glucagon promoter) is introduced into the nonobese diabetic mouse (NOD) genetic background, the
mice develop endocrine and exocrine pancreatic hypoplasia, low serum insulin concentrations, and impaired glucose tolerance.
To identify genetic modifiers of the diabetic phenotypes, we crossed hemizygous NOD-Tgf with DBA/2J mice (D2) or C3H/HeJ mice (C3H) and used the “transgenic mice” for quantitative trait loci (QTL) analysis. Genome-wide
scans of F2-D Tgf/Tgf (D2 × NOD) and F2-C Tgf/Tgf (C3H × NOD), homozygous for the TGF-β1 transgene, identified six statistically significant modifier QTLs: one QTL (Tdn1) in F2-D Tgf/Tgf, and five QTLs (Tcn1 to Tcn5) in F2-C Tgf/Tgf. Tdn1 (Chr 13, LOD = 4.39), and Tcn3 (Chr 2, LOD = 4.94) showed linkage to body weight at 8 weeks of age. Tcn2 (Chr 7, LOD = 4.38) and Tcn4 (Chr 14, LOD = 3.99 and 3.78) showed linkage to blood glucose (BG) concentrations in ipGTT at 30, 0, and 120 min, respectively. Tcn1 (Chr 1, LOD = 4.41) and Tcn5 (Chr 18, LOD = 4.99) showed linkage to serum insulin concentrations in ipGTT at 30 min. Tcn2 includes the candidate gene, uncoupling protein 2 (Ucp2), and shows linkage to Ucp2 mRNA levels in the soleus muscle (LOD = 4.90). Identification of six QTLs for diabetes-related traits in F2-D Tgf/Tgf and F2-C Tgf/Tgf raises the possibility of identifying candidate susceptibility genes and new targets for drug development for human type
2 diabetes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
79.
80.
Ryosuke Misu Shinya Oishi Shohei Setsuda Taro Noguchi Masato Kaneda Hiroaki Ohno Barry Evans Jean-Marc Navenot Stephen C. Peiper Nobutaka Fujii 《Bioorganic & medicinal chemistry letters》2013,23(9):2628-2631
Kisspeptins, endogenous peptide ligands for GPR54, play an important role in GnRH secretion. Since in vivo administration of kisspeptins induces increased plasma LH levels, GPR54 agonists hold promise as therapeutic agents for the treatment of hormonal secretion diseases. To facilitate the design of novel potent GPR54 ligands, residues in kisspeptins that involve in the interaction with GPR54 were investigated by kisspeptin-based photoaffinity probes. Herein, we report the design and synthesis of novel kisspeptin-based photoaffinity probes, and the application to crosslinking experiments for GPR54-expressing cells. 相似文献