首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   12篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   7篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
11.
12.
Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances.  相似文献   
13.
Adelphocorisella australis sp. n. is described from north Queensland. This, the first representative of the genus known from Australia, is compared with the two previously described species, both from Japan.  相似文献   
14.
Takagi M  Absalon MJ  McLure KG  Kastan MB 《Cell》2005,123(1):49-63
Increases in p53 protein levels after DNA damage have largely been attributed to an increase in the half-life of p53 protein. Here we demonstrate that increased translation of p53 mRNA is also a critical step in the induction of p53 protein in irradiated cells. Ribosomal protein L26 (RPL26) and nucleolin were found to bind to the 5' untranslated region (UTR) of p53 mRNA and to control p53 translation and induction after DNA damage. RPL26 preferentially binds to the 5'UTR after DNA damage, and its overexpression enhances association of p53 mRNA with heavier polysomes, increases the rate of p53 translation, induces G1 cell-cycle arrest, and augments irradiation-induced apoptosis. Opposite effects were seen when RPL26 expression was inhibited. In contrast, nucleolin overexpression suppresses p53 translation and induction after DNA damage, whereas nucleolin downregulation promotes p53 expression. These findings demonstrate the importance of increased translation of p53 in DNA-damage responses and suggest critical roles for RPL26 and nucleolin in affecting p53 induction.  相似文献   
15.
We show that DNA double-strand breaks (DSBs) induce complex subcompartmentalization of genome surveillance regulators. Chromatin marked by gamma-H2AX is occupied by ataxia telangiectasia-mutated (ATM) kinase, Mdc1, and 53BP1. In contrast, repair factors (Rad51, Rad52, BRCA2, and FANCD2), ATM and Rad-3-related (ATR) cascade (ATR, ATR interacting protein, and replication protein A), and the DNA clamp (Rad17 and -9) accumulate in subchromatin microcompartments delineated by single-stranded DNA (ssDNA). BRCA1 and the Mre11-Rad50-Nbs1 complex interact with both of these compartments. Importantly, some core DSB regulators do not form cytologically discernible foci. These are further subclassified to proteins that connect DSBs with the rest of the nucleus (Chk1 and -2), that assemble at unprocessed DSBs (DNA-PK/Ku70), and that exist on chromatin as preassembled complexes but become locally modified after DNA damage (Smc1/Smc3). Finally, checkpoint effectors such as p53 and Cdc25A do not accumulate at DSBs at all. We propose that subclassification of DSB regulators according to their residence sites provides a useful framework for understanding their involvement in diverse processes of genome surveillance.  相似文献   
16.
Ribosomal protein RPL26 enhances p53 translation after DNA damage, and this regulation depends upon interactions between the 5'- and 3'-UTRs of human p53 mRNA (Takagi, M., Absalon, M. J., McLure, K. G., and Kastan, M. B. (2005) Cell 123, 49-63; Chen, J., and Kastan, M. B. (2010) Genes Dev. 24, 2146-2156). In contrast, nucleolin (NCL) suppresses the translation of p53 mRNA and its induction after DNA damage. We confirmed reports that RPL26 and NCL interact with each other and then explored the potential role of this interaction in the translational control of p53 after stress. NCL repression of p53 translation utilizes both the 5'- and 3'-UTRs of p53 mRNA, and NCL binds to the same 5'-3'-UTR interaction region that is critical for the recruitment of RPL26 to p53 mRNA after DNA damage. We also found that NCL is able to oligomerize, consistent with a model in which NCL stabilizes this double-stranded RNA structure. We found that the RNA-binding domain of NCL participates in binding to p53 mRNA, is required for both NCL dimerization and NCL-mediated translational repression, and is the domain of NCL that interacts with RPL26. Excessive RPL26 disrupts NCL dimerization, and point mutations in the NCL-interacting region of RPL26 reduce NCL-RPL26 interactions and attenuate both RPL26 binding to human p53 mRNA and p53 induction by RPL26. These observations suggest a model in which the base pairings in the p53 UTR interaction regions are critical for both translational repression and stress induction of p53 by NCL and RPL26, respectively, and that disruption of a NCL-NCL homodimer by RPL26 may be the switch between translational repression and activation after stress.  相似文献   
17.
The various pathologies in ataxia telangiectasia (A-T) patients including T-cell lymphomagenesis have been attributed to defects in the DNA damage response pathway because ATM, the gene mutated in this disease, is a key mediator of this process. Analysis of Atm-deficient thymocytes in mice reveals that the absence of this gene results in altered mitochondrial homeostasis, a phenomenon that appears to result from abnormal mitophagy engagement. Interestingly, allelic loss of the autophagic gene Becn1 delays tumorigenesis in Atm-null mice presumably by reversing the mitochondrial abnormalities and not by improving the DNA damage response (DDR) pathway. Thus, ATM plays a critical role in modulating mitochondrial homeostasis perhaps by regulating mitophagy.  相似文献   
18.
19.
Molecular determinants of sensitivity to antitumor agents.   总被引:2,自引:0,他引:2  
  相似文献   
20.
Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylami-nofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6-3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of ~2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of ~2.7% in 10–20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号