首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   14篇
  203篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   9篇
  2011年   11篇
  2010年   9篇
  2009年   10篇
  2008年   6篇
  2007年   11篇
  2006年   8篇
  2005年   9篇
  2004年   3篇
  2003年   3篇
  2002年   10篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1942年   1篇
排序方式: 共有203条查询结果,搜索用时 0 毫秒
51.
Lassila JK  Keeffe JR  Kast P  Mayo SL 《Biochemistry》2007,46(23):6883-6891
Secondary active-site residues in enzymes, including hydrophobic amino acids, may contribute to catalysis through critical interactions that position the reacting molecule, organize hydrogen-bonding residues, and define the electrostatic environment of the active site. To ascertain the tolerance of an important model enzyme to mutation of active-site residues that do not directly hydrogen bond with the reacting molecule, all 19 possible amino acid substitutions were investigated in six positions of the engineered chorismate mutase domain of the Escherichia coli chorismate mutase-prephenate dehydratase. The six secondary active-site residues were selected to clarify results of a previous test of computational enzyme design procedures. Five of the positions encode hydrophobic side chains in the wild-type enzyme, and one forms a helix N-capping interaction as well as a salt bridge with a catalytically essential residue. Each mutant was evaluated for its ability to complement an auxotrophic chorismate mutase deletion strain. Kinetic parameters and thermal stabilities were measured for variants with in vivo activity. Altogether, we find that the enzyme tolerated 34% of the 114 possible substitutions, with a few mutations leading to increases in the catalytic efficiency of the enzyme. The results show the importance of secondary amino acid residues in determining enzymatic activity, and they point to strengths and weaknesses in current computational enzyme design procedures.  相似文献   
52.
We have performed molecular dynamics simulations of the phosphorylated (at S-19) and the unphosphorylated 25-residue N-terminal phosphorylation domain of the regulatory light chain (RLC) of smooth muscle myosin to provide insight into the structural basis of regulation. This domain does not appear in any crystal structure, so these simulations were combined with site-directed spin labeling to define its structure and dynamics. Simulations were carried out in explicit water at 310 K, starting with an ideal alpha-helix. In the absence of phosphorylation, large portions of the domain (residues S-2 to K-11 and R-16 through Y-21) were metastable throughout the simulation, undergoing rapid transitions among alpha-helix, pi-helix, and turn, whereas residues K-12 to Q-15 remained highly disordered, displaying a turn motif from 1 to 22.5 ns and a random coil pattern from 22.5 to 50 ns. Phosphorylation increased alpha-helical order dramatically in residues K-11 to A-17 but caused relatively little change in the immediate vicinity of the phosphorylation site (S-19). Phosphorylation also increased the overall dynamic stability, as evidenced by smaller temporal fluctuations in the root mean-square deviation. These results on the isolated phosphorylation domain, predicting a disorder-to-order transition induced by phosphorylation, are remarkably consistent with published experimental data involving site-directed spin labeling of the intact RLC bound to the two-headed heavy meromyosin. The simulations provide new insight into structural details not revealed by experiment, allowing us to propose a refined model for the mechanism by which phosphorylation affects the N-terminal domain of the RLC of smooth muscle myosin.  相似文献   
53.
54.
The aim of the study was to evaluate anthropometric characteristics as determinants of 500 m rowing ergometer performance in physically inactive collegiate females. In this cross-sectional study, which included 196 collegiate females aged 19-23 years not participating in regular physical activities, body mass (BM), body height (BH), length of upper limbs (LA), length of lower limbs (LL), body mass index (BMI), slenderness index (SI), and the Choszcz-Podstawski index (CPI) were measured and a stepwise multiple regression analysis was performed. Participants performed 500 m maximal effort on a Concept II rowing ergometer. BM, BH, LA, LL, and the BMI, SI and CPI indices were found to be statistically significant determinants of 500 m performance. The best results (T) were achieved by females whose BH ranged from 170 to 180 cm, with LA and LL ranging from 75 to 80 cm and 85 to 90 cm, respectively. The best fitting statistical model was identified as: T = 11.6793 LR – 0.1130 LR2 – 0.0589 LN2 + 29.2157 CPI2 + 0.1370 LR·LN - 2.6926 LR·CPI – 211.7796. This study supports a need for additional studies focusing on understanding the importance of anthropometric differences in rowing ergometer performance, which could lead to establishing a better quality reference for evaluation of cardiorespiratory fitness tested using a rowing ergometer in collegiate females.  相似文献   
55.
56.
57.
Hitchhiking effects of advantageous mutations have been invoked to explain reduced polymorphism in regions of low crossing-over in Drosophila. Besides reducing DNA heterozygosity, hitchhiking effects should produce strong linkage disequilibrium and a frequency spectrum skewed toward an excess of rare polymorphisms (compared to the neutral expectation). We measured DNA polymorphism in a Zimbabwe population of D. melanogaster at three loci, yellow, achaete, and suppressor of forked, located in regions of reduced crossing-over. Similar to previously published surveys of these genomic regions in other populations, we observed low levels of nucleotide variability. However, the frequency spectrum was compatible with a neutral model, and there was abundant evidence for recombination in the history of the yellow and ac genes. Thus, some aspects of the data cannot be accounted for by a simple hitchhiking model. An alternative hypothesis, background selection, might be compatible with the observed patterns of linkage disequilibrium and the frequency spectrum. However, this model cannot account for the observed reduction in nucleotide heterozygosity. Thus, there is currently no satisfactory theoretical model for the data from the tip and base of the X chromosome in D. melanogaster.   相似文献   
58.
Oligogalacturonic acids (OGAs), derived from plant cell wall pectin, have been implicated in a number of signal transduction pathways involved in growth, development and defense responses of higher plants. This study investigates the size range of OGAs capable of inducing ethylene synthesis in tomato plants, and demonstrates that in contrast with many other effects, only short chain OGAs are active. Oligomers across a range of DP from 2-15 were separated and purified to homogeneity by QAE-Sephadex anion exchange chromatography using a novel elution system. The OGAs were applied to tomato plants and assayed for their ability to induce ethylene gas release and changes in steady state levels of mRNA encoding the ethylene forming enzyme aminocyclopropane-1-carboxylic acid oxidase (ACO). The study demonstrated that only OGAs in the size range of DP4-6 were active both in eliciting ACO expression and in the production of ethylene.   相似文献   
59.
Genetic selection provides an effective way to obtain active catalysts from a diverse population of protein variants. We have used this tool to investigate the role of loop sequences in determining the quaternary structure of a domain-swapped enzyme. By inserting random loops of four to seven residues into a dimeric chorismate mutase and selecting for functional variants by genetic complementation, we have obtained and characterized both monomeric and hexameric enzymes that retain considerable catalytic activity. The low percentage of active proteins recovered from these selection experiments indicates that relatively few loop sequences permit a change in quaternary structure without affecting active site structure. The results of our experiments suggest further that protein stability can be an important driving force in the evolution of oligomeric proteins.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号