首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   6篇
  95篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2017年   6篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1979年   3篇
  1978年   3篇
排序方式: 共有95条查询结果,搜索用时 0 毫秒
61.
This study was conducted to isolate and identify lactobacilli from larval and adult midgut of wild Aedes aegypti (Ae. aegypti) to find candidate bacteria for paratransgenic control. Characterization of the bacterial symbionts was done using Gram staining, motility test, catalase test, and biochemical tests, among others, and the morphological features were confirmed using a standard scheme that simplifies the identification of lactic acid bacteria. A total of 174 strains were isolated and identified, 135 strains from larval midgut and 39 strains from adult midgut (mean ± SE, 4.00 ± 0.72; P = 0.00). The isolated species were confirmed to be Lactobacillus fermentum, L. casei, L. acidophilus, L. viridescens, L. brevis and L. gasseri. It can be concluded that Ae. aegypti has the potential of harboring the cultivable bacterial symbionts. In conclusion, the isolated species were nominated for paratransgenic control, particularly L. fermentum, being found in large numbers from both larval and adulxt midgut.  相似文献   
62.
Tan  Ji  Tan  Pui-Ling  Poong  Sze-Wan  Brakel  Janina  Gachon  Claire  Brodie  Juliet  Sade  Ahemad  Kassim  Azhar  Lim  Phaik-Eem 《Journal of applied phycology》2022,34(5):2719-2733
Journal of Applied Phycology - The region of Eastern Sabah, Malaysia, harbours a rich diversity of eucheumatoid (i.e. Kappaphycus and Eucheuma spp.) algae. The global cultivation of this group of...  相似文献   
63.
Successful cryopreservation of articular cartilage (AC) could improve clinical results of osteochondral allografting and provide a useful treatment alternative for large cartilage defects. However, successful cartilage cryopreservation is limited by the time required for cryoprotective agent (CPA) permeation into the matrix and high CPA toxicity. This study describes a novel, practical method to examine the time-dependent permeation of CPAs [dimethyl sulfoxide (DMSO) and propylene glycol (PG)] into intact porcine AC. Dowels of porcine AC (10 mm diameter) were immersed in solutions containing high concentrations of each CPA for different times (0, 15, 30, 60 min, 3, 6, and 24 h) at three temperatures (4, 22, and 37 degrees C), with and without cartilage attachment to bone. The cartilage was isolated and the amount of cryoprotective agent within the matrix was determined. The results demonstrated a sharp rise in the CPA concentration within 15-30 min exposure to DMSO and PG. The concentration plateaued between 3 and 6 h of exposure at a concentration approximately 88-99% of the external concentration (6.8 M). This observation was temperature-dependent with slower permeation at lower temperatures. This study demonstrated the effectiveness of a novel technique to measure CPA permeation into intact AC, and describes permeation kinetics of two common CPAs into intact porcine AC.  相似文献   
64.
The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation.  相似文献   
65.
The role of CD4+ helper T cells in modulating the acquired immune response to herpes simplex virus type 1 (HSV-1) remains ill defined; in particular, it is unclear whether CD4+ T cells are needed for the generation of the protective HSV-1-specific CD8+-T-cell response. This study examined the contribution of CD4+ T cells in the generation of the primary CD8+-T-cell responses following acute infection with HSV-1. The results demonstrate that the CD8+-T-cell response generated in the draining lymph nodes of CD4+-T-cell-depleted C57BL/6 mice and B6-MHC-II−/− mice is quantitatively and qualitatively distinct from the CD8+ T cells generated in normal C57BL/6 mice. Phenotypic analyses show that virus-specific CD8+ T cells express comparable levels of the activation marker CD44 in mice lacking CD4+ T cells and normal mice. In contrast, CD8+ T cells generated in the absence of CD4+ T cells express the interleukin 2 receptor α-chain (CD25) at lower levels. Importantly, the CD8+ T cells in the CD4+-T-cell-deficient environment are functionally active with respect to the expression of cytolytic activity in vivo but exhibit a diminished capacity to produce gamma interferon and tumor necrosis factor alpha. Furthermore, the primary expansion of HSV-1-specific CD8+ T cells is diminished in the absence of CD4+-T-cell help. These results suggest that CD4+-T-cell help is essential for the generation of fully functional CD8+ T cells during the primary response to HSV-1 infection.Infection due to herpes simplex virus type 1 (HSV-1) results in a wide spectrum of clinical presentations depending on the host''s age, the host''s immune status, and the route of inoculation (47). HSV-1 typically causes mild and self-limited lesions on the orofacial areas or genital sites. However, the disease can be life-threatening, as in the case of neonatal and central nervous system infections (18). The host''s immune responses, particularly CD8+ T cells, play an important role in determining the outcome of HSV infections in both the natural human host (18, 19, 28) and experimental murine models (11, 43). Immunodepletion and adoptive transfer studies have demonstrated the role of CD8+ T cells in reducing viral replication, resolving cutaneous disease, and providing overall protection upon rechallenge (6, 25, 26). CD8+ T cells play a particularly important role in preventing infection of the peripheral nervous system (PNS) and the reactivation of latent virus from neurons in the sensory ganglia of infected mice (21, 24, 36). The mechanisms that CD8+ T cells employ include gamma interferon (IFN-γ) production and functions associated with cytolytic granule content at the sites of primary infection (23, 31, 38). In the PNS of infected mice, the mechanisms primarily involve IFN-γ secretion (16, 20, 29), particularly against infected neurons expressing surface Qa-1 (41). Histopathological evidence from HSV-1-infected human ganglion sections show a large CD8+-T-cell infiltrate and the presence of inflammatory cytokines, suggesting that the presence of activated, effector memory cells within the PNS is important for maintaining HSV-1 latency in the natural human host (10, 42).The generation of a robust CD8+-T-cell response is essential for the control of various infectious pathogens. Some studies suggest that a brief interaction with antigen-presenting cells (APCs) is sufficient for CD8+-T-cell activation and expansion into functional effectors (44). However, the magnitude and quality of the overall CD8+-T-cell response generated may be dependent on additional factors (49). Recent evidence suggests that CD4+ T cells facilitate the activation and development of CD8+-T-cell responses either directly through the provision of cytokines or indirectly by the conditioning of dendritic cells (DC) (8, 48, 51). Those studies suggested that the latter mechanism is the dominant pathway, wherein CD4+ T cells assist CD8+-T-cell priming via the engagement of CD40 ligand (CD154) on CD4+ T cells and CD40 expressed on DC (4, 30, 33). This interaction results in the activation and maturation of DC, making them competent to stimulate antigen-specific CD8+-T-cell responses (35, 37).The requirement for CD4+-T-cell help in the generation of primary and secondary CD8+-T-cell responses to antigen varies. Primary CD8+-T-cell responses to infectious pathogens, such as Listeria monocytogenes, lymphocytic choriomeningitis virus (LCMV), influenza virus, and vaccinia virus, can be mounted effectively independently of CD4+-T-cell help (3, 12, 22, 34). In contrast, primary CD8+-T-cell responses to nonmicrobial antigens display an absolute dependence on CD4+-T-cell help (4, 5, 30, 33, 46). This observed difference in the requirement for CD4+-T-cell help may ultimately be a product of the initial inflammatory stimulus generated following immunization (49). Microbial antigens trigger an inflammatory response that can lead to the direct activation and priming of APCs, such as DC, thereby bypassing the need for CD4+-T-cell help. Nonmicrobial antigens, however, trigger an attenuated inflammatory response that does not directly activate and prime DCs. In the absence of this inflammation, CD4+ T cells are thought to condition and license DC functions through CD154/CD40 interactions, which leads to the subsequent activation of antigen-specific CD8+-T-cell responses (5, 49). Even in the case of pathogens where primary CD8+-T-cell responses were independent of CD4+-T-cell help, the secondary responses to these pathogens were found to be defective in the absence of CD4+-T-cell help (3, 12, 34, 40).The requirement for CD4+-T-cell help in priming CD8+-T-cell responses against HSV-1 infection is not well defined. Earlier studies with HSV-1 suggested that CD4+ T cells play an important role in the generation of primary CD8+-T-cell responses, detected in vitro, to acute infection with HSV-1 (14), principally through the provision of interleukin 2 (IL-2) for optimal CD8+-T-cell differentiation and proliferation. Subsequent studies, utilizing an in vivo approach, indicated that CD4+ T cells were not required for CD8+-T-cell-mediated cytolytic function (23). CD4+ T cells are thought to provide help by conditioning DC in a cognate, antigen-specific manner, thereby making them competent to stimulate HSV-1-specific CD8+-T-cell responses (37). By contrast, findings from other studies show that CD4+-T-cell-depleted mice were able to fully recover from acute infection with HSV-1 (38). These studies imply that the absence of CD4+ T cells does not prevent priming of CD8+ T cells in vivo.Studies from this laboratory have identified two distinct HSV-1-specific CD8+-T-cell subpopulations generated during the primary response, based upon the ability to synthesize IFN-γ following antigenic stimulation in vitro (1). To better understand the need for CD4+-T-cell help, we examined the functional characteristics and phenotypes of these CD8+-T-cell populations generated during a primary response to acute infection with HSV-1 in mice lacking CD4+ T cells. Our findings show that primary CD8+-T-cell responses to HSV-1 are compromised in the absence of CD4+-T-cell help. Specifically, the HSV-1 gB-specific CD8+ T cells produced in the absence of CD4+ T cells were found to be active with regard to cytolysis in vivo but were functionally impaired in the production of IFN-γ and TNF-α compared with intact C57BL/6 mice. Virus-specific CD8+ T cells were also reduced in number in CD4-depleted mice and in B6 mice lacking major histocompatibility complex (MHC) class II expression (B6-MHC-II−/−) compared to wild-type (WT) mice. In addition, our data showed higher virus burdens in the infectious tissues obtained from mice lacking CD4+ T cells than in those from intact mice. Collectively, these findings demonstrate that CD4+-T-cell help is essential for the generation of primary CD8+-T-cell responses following acute cutaneous infection with HSV-1.  相似文献   
66.
67.
A growing body of evidence has consistently shown a correlation between obesity and chronic subclinical inflammation. It is unclear whether the size of specific adipose depots is more closely associated with concentrations of inflammatory markers than overall adiposity. This study investigated the relationship between inflammatory markers and computerized tomography‐derived abdominal visceral and subcutaneous fat and thigh intermuscular and subcutaneous fat in older white and black adults. Data were from 2,651 black and white men and women aged 70–79 years participating in the Health, Aging, and Body Composition (Health ABC) study. Inflammatory markers, interleukin‐6 (IL‐6), C‐reactive protein (CRP), and tumor necrosis factor‐α (TNF‐α) were obtained from serum samples. Abdominal visceral and subcutaneous fat and thigh intermuscular and subcutaneous fat were quantified on computerized tomography images. Linear regression analysis was used to evaluate the cross‐sectional relationship between specific adipose depots and inflammatory markers in four race/gender groups. As expected, blacks have less visceral fat than whites and women less visceral fat than men. However, abdominal visceral adiposity was most consistently associated with significantly higher IL‐6 and CRP concentrations in all race/gender groups (P < 0.05), even after controlling for general adiposity. Thigh intermuscular fat had an inconsistent but significant association with inflammation, and there was a trend toward lower inflammatory marker concentration with increasing thigh subcutaneous fat in white and black women. Despite the previously established differences in abdominal fat distribution across gender and race, visceral fat remained a significant predictor of inflammatory marker concentration across all four subgroups examined.  相似文献   
68.
Mitochondrial experiments are of increasing interest in different fields of research. Inhibition of mitochondrian activities seems to play a role in Parkinson's disease and in this regard several animal models have used inhibitors of mitochondrial respiration such as rotenone or MPTP. Most of these experiments were done during the daytime. However, there is no reason for mitochondrial respiration to be constant during the 24h. This study investigated the circadian variation of oxidative phosphorylation in isolated rat brain mitochondria and the administration-time-dependent effect of rotenone and melatonin. The respiratory control ratio, state 3 and state 4, displayed a circadian fluctuation. The highest respiratory control ratio value (3.01) occurred at 04:00h, and the lowest value (2.63) at 08:00h. The highest value of state 3 and state 4 oxidative respiration occurred at 12:00h and the lowest one at 20:00h. The 24h mean decrease in the respiratory control ratio following incubation with melatonin and rotenone was 7 and 32%, respectively; however, the exact amount of the inhibition exerted by these agents varied according to the time of the mitochondria isolation. Our results show the time of mitochondrial isolation could lead to interindividual variability. When studies require mitochondrial isolation from several animals, the time between animal experiments has to be minimized. In oxidative phosphorylation studies, the time of mitochondria isolation must be taken into account, or at least specified in the methods section.  相似文献   
69.
Myeloperoxidase uses hydrogen peroxide (H2O2) to generate hypochlorous acid (HOCl), a potent cytotoxic oxidant. We demonstrate that HOCl regulates the activity of matrix metalloproteinase-7 (MMP-7, matrilysin) in vitro, suggesting that this oxidant activates MMPs in the artery wall. Indeed, both MMP-7 and myeloperoxidase were colocalized to lipid-laden macrophages in human atherosclerotic lesions. A highly conserved domain called the cysteine switch has been proposed to regulate MMP activity. When we exposed a synthetic peptide that mimicked the cysteine switch to HOCl, HPLC analysis showed that the thiol residue reacted rapidly, generating a near-quantitative yield of products. Tandem mass spectrometric analysis identified the products as sulfinic acid, sulfonic acid, and a dimer containing a disulfide bridge. In contrast, the peptide reacted slowly with H2O2, and the only product was the disulfide. Moreover, HOCl markedly activated pro-MMP-7, an MMP expressed at high levels in lipid-laden macrophages in vivo. Tandem mass spectrometric analysis of trypsin digests revealed that the thiol residue of the enzyme's cysteine switch domain had been converted to sulfinic acid. Thiol oxidation was associated with autolytic cleavage of pro-MMP-7, strongly suggesting that oxygenation activates the latent enzyme. In contrast, H2O2 failed to oxidize the thiol residue of the protein or activate the enzyme. Thus, HOCl activates pro-MMP-7 by converting the thiol residue of the cysteine switch to sulfinic acid. This activation mechanism is distinct from the well-studied proteolytic cleavage of MMP pro-enzymes. Our observations raise the possibility that HOCl generated by myeloperoxidase contributes to MMP activation, and therefore to plaque rupture, in the artery wall. HOCl and other oxidants might regulate MMP activity by the same mechanism in a variety of inflammatory conditions.  相似文献   
70.
Matrix metalloproteinases (MMPs) function in homeostatic and repair processes, but unregulated catalysis by these extracellular proteinases leads to the pathological destruction of tissue proteins. An important mechanism for controlling enzyme activity might involve hypochlorous acid (HOCl), a potent oxidant produced by the myeloperoxidase system of phagocytes. We have shown that inactivation of MMP-7 (matrilysin) by HOCl coincides with the formation of a novel oxidation product, WG-4, through modification of adjacent tryptophan and glycine residues and loss of 4 atomic mass units. Here, we use mass spectrometry, UV/visible spectroscopy, hydrogen-deuterium exchange, and NMR spectroscopy to investigate the formation and structure of WG-4. For the initial step, HOCl chlorinates the indole ring of tryptophan. The resulting 3-chloroindolenine generates a previously unknown cyclic indole-amide species, in which tryptophan cross-links to the main chain nitrogen of the adjacent glycine residue to form an aromatic six-membered ring. WG-4 kinks and stiffens the peptide backbone, which may hinder the interaction of substrate with the catalytic pocket of MMP-7. Our observations indicate that specific structural motifs are important for controlling protein modification by oxidants and suggest that pericellular oxidant production by phagocytes might limit MMP activity during inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号