首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   45篇
  336篇
  2022年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   5篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   3篇
  2008年   6篇
  2007年   15篇
  2006年   13篇
  2005年   17篇
  2004年   16篇
  2003年   12篇
  2002年   9篇
  2001年   12篇
  2000年   12篇
  1999年   10篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1993年   4篇
  1992年   9篇
  1991年   7篇
  1990年   10篇
  1989年   11篇
  1988年   8篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1970年   3篇
  1967年   3篇
  1966年   2篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
101.
Nitric oxide (NO) has concentration-dependent biphasic myocardial contractile effects. We tested the hypothesis, in isolated rat hearts, that NO cardiostimulation is primarily non-cGMP dependent. Infusion of 3-morpholinosydnonimine (SIN-1, 10(-5) M), which may participate in S-nitrosylation (S-NO) via peroxynitrite formation, increased the rate of left ventricular pressure rise (+dP/dt; 19 +/- 4%, P < 0.001, n = 11) without increasing effluent cGMP or cAMP. Superoxide dismutase (SOD; 150 U/ml) blocked SIN-1 cardiostimulation and led to cGMP elaboration. Sodium nitroprusside (10(-10)-10(-7) M), an iron nitrosyl compound, did not augment +dP/dt but increased cGMP approximately eightfold (P < 0.001), whereas diethylamine/NO (DEA/NO; 10(-7) M), a spontaneous NO. donor, increased +dP/dt (5 +/- 2%, P < 0.05, n = 6) without augmenting cGMP. SIN-1 and DEA/NO +dP/dt increase persisted despite guanylyl cyclase inhibition with 1H-(1,2,4)oxadiazolo-(4,3,-a)quinoxalin-1-one (10(-5) M, P < 0.05 for both donors), suggesting a cGMP-independent mechanism. Glutathione (5 x 10(-4) M, n = 15) prevented SIN-1 cardiostimulation, suggesting S-NO formation. SIN-1 also produced SOD-inhibitable cardiostimulation in vivo in mice. Thus peroxynitrite and NO donors can stimulate myocardial contractility independently of guanylyl cyclase activation, suggesting a role for S-NO reactions in NO/peroxynitrite-positive inotropic effects in intact hearts.  相似文献   
102.
103.
Global assessment of both cardiac and arterial function is important for a meaningful interpretation of pathophysiological changes in animal models of cardiovascular disease. We simultaneously acquired left ventricular (LV) and aortic pressure and LV volume (V(LV)) in 17 open-chest anesthetized mice (26.7 +/- 3.2g) during steady-state (BL) and caval vein occlusion (VCO) using a 1.4-Fr dual-pressure conductance catheter and in a subgroup of eight animals during aortic occlusion (AOO). Aortic flow was obtained from numerical differentiation of V(LV). AOO increased input impedance (Z(in)) for the first two harmonics, increased characteristic impedance (0.025 +/- 0.007 to 0.040 +/- 0.011 mmHg x microl(-1) x s, P < 0.05), and shifted the minimum in Z(in) from the third to the sixth harmonic. For all conditions, the Z(in) could be well represented by a four-element windkessel model. The augmentation index increased from 116.7 +/- 7.8% to 145.9 +/- 19.5% (P < 0.01) as well as estimated pulse-wave velocity (3.50 +/- 0.94 to 5.95 +/- 1.62 m/s, P < 0.05) and arterial elastance (E(a), 4.46 +/- 1.62 to 6.02 +/- 1.43 mmHg/microl, P < 0.01). AOO altered the maximal slope (E(max), 3.23 +/- 1.02 to 5.53 +/- 1.53 mmHg/microl, P < 0.05) and intercept (-19.9 +/- 8.6 to 1.62 +/- 13.51 microl, P < 0.01) of the end-systolic pressure-volume relation but not E(a)/E(max) (1.44 +/- 0.43 to 1.21 +/- 0.37, not significant). We conclude that simultaneous acquisition of Z(in) and arterial function parameters in the mouse, based solely on conductance catheter measurements, is feasible. We obtained an anticipated response of Z(in) and arterial function parameters following VCO and AOO, demonstrating the sensitivity of the measuring technique to induced physiological alterations in murine hemodynamics.  相似文献   
104.
We have investigated the effects of H ions on (L-type) Ca channel current in isolated ventricular cells. We find that the current amplitude is enhanced in solutions that are alkaline relative to pH 7.4 and reduced in solutions acidic to this pH. We measured pH0-induced shifts in channel gating and analyzed our results in terms of surface potential theory. The shifts are well described by changes in surface potential caused by the binding of H ions to negative charges on the cell surface. The theory predicts a pK of 5.8 for this binding. Gating shifts alone cannot explain all of our observations on modulation of current amplitude. Our results suggest that an additional mechanism contributes to modification of the current amplitude.  相似文献   
105.
Erythroblasts from patients with chronic erythremic myelosis (Di Guglielmo Syndrome) showed unique purple punctate nuclear staining after exposure to gold chloride. Presence of indole-containing material in the nuclei of these cells may account in part for the cytochemical reaction.  相似文献   
106.
Although long-standing theory suggests that biotic variables are only relevant at local scales for explaining the patterns of species' distributions, recent studies have demonstrated improvements to species distribution models (SDMs) by incorporating predictor variables informed by biotic interactions. However, some key methodological questions remain, such as which kinds of interactions are permitted to include in these models, how to incorporate the effects of multiple interacting species, and how to account for interactions that may have a temporal dependence. We addressed these questions in an effort to model the distribution of the monarch butterfly Danaus plexippus during its fall migration (September–November) through Mexico, a region with new monitoring data and uncertain range limits even for this well-studied insect. We estimated species richness of selected nectar plants (Asclepias spp.) and roosting trees (various highland species) for use as biotic variables in our models. To account for flowering phenology, we additionally estimated nectar plant richness of flowering species per month. We evaluated three types of models: climatic variables only (abiotic), plant richness estimates only (biotic) and combined (abiotic and biotic). We selected models with AICc and additionally determined if they performed better than random on spatially withheld data. We found that the combined models accounting for phenology performed best for all three months, and better than random for discriminatory ability but not omission rate. These combined models also produced the most ecologically realistic spatial patterns, but the modeled response for nectar plant richness matched ecological predictions for November only. These results represent the first model-based monarch distributional estimates for the Mexican migration route and should provide foundations for future conservation work. More generally, the study demonstrates the potential benefits of using SDM-derived richness estimates and phenological information for biotic factors affecting species distributions.  相似文献   
107.
Studies report variable factors associated with dog and cat surpluses in the United States. Estimates of cat and dog birth and death rates help understand the problem. This study collected data through a commercial survey company, distributing questionnaires to 7,399 cat- and dog-owning households (HHs) in 1996. The study used an unequal probability sampling plan and reported estimates of means and variances as weighted averages. The study used estimates of HHs and companion animals for national projections. More than 9 million owned cats and dogs died during 1996-yielding crude death rates of 8.3 cat deaths/100 cats in HHs and 7.9 dog deaths/100 dogs in HHs. The study reported twice as many kitten as puppy litters, with an average litter size of 5.73 and 7.57, respectively. The study reported data on planned versus unplanned litters, reasons caregivers did not spay females, disposition of litters, and sources of animals added to HHs. These first national estimates indicate the magnitude of, and reasons for, animals leaving HHs. The crude birth rate was estimated to be 11.2 kittens/100 cats in HHs and 11.4 puppies/100 dogs in HHs.  相似文献   
108.
Ca2+ has been proposed to regulate Na+ channels through the action of calmodulin (CaM) bound to an IQ motif or through direct binding to a paired EF hand motif in the Nav1 C terminus. Mutations within these sites cause cardiac arrhythmias or autism, but details about how Ca2+ confers sensitivity are poorly understood. Studies on the homologous Cav1.2 channel revealed non-canonical CaM interactions, providing a framework for exploring Na+ channels. In contrast to previous reports, we found that Ca2+ does not bind directly to Na+ channel C termini. Rather, Ca2+ sensitivity appears to be mediated by CaM bound to the C termini in a manner that differs significantly from CaM regulation of Cav1.2. In Nav1.2 or Nav1.5, CaM bound to a localized region containing the IQ motif and did not support the large Ca(2+)-dependent conformational change seen in the Cav1.2.CaM complex. Furthermore, CaM binding to Nav1 C termini lowered Ca2+ binding affinity and cooperativity among the CaM-binding sites compared with CaM alone. Nonetheless, we found suggestive evidence for Ca2+/CaM-dependent effects upon Nav1 channels. The R1902C autism mutation conferred a Ca(2+)-dependent conformational change in Nav1.2 C terminus.CaM complex that was absent in the wild-type complex. In Nav1.5, CaM modulates the Cterminal interaction with the III-IV linker, which has been suggested as necessary to stabilize the inactivation gate, to minimize sustained channel activity during depolarization, and to prevent cardiac arrhythmias that lead to sudden death. Together, these data offer new biochemical evidence for Ca2+/CaM modulation of Na+ channel function.  相似文献   
109.
Recent studies have found that selective stimulation of troponin (Tn)I protein kinase A (PKA) phosphorylation enhances heart rate-dependent inotropy and blunts relaxation delay coupled to increased afterload. However, in failing hearts, TnI phosphorylation by PKA declines while protein kinase C (PKC) activity is enhanced, potentially augmenting TnI PKC phosphorylation. Accordingly, we hypothesized that these site-specific changes deleteriously affect both rate-responsive cardiac function and afterload dependence of relaxation, both prominent phenotypic features of the failing heart. A transgenic (TG) mouse model was generated in which PKA-TnI sites were mutated to mimic partial dephosphorylation (Ser22 to Ala; Ser23 to Asp) and dominant PKC sites were mutated to mimic constitutive phosphorylation (Ser42 and Ser44 to Asp). The two highest-expressing lines were further characterized. TG mice had reduced fractional shortening of 34.7 +/- 1.4% vs. 41.3 +/- 2.0% (P = 0.018) and slight chamber dilation on echocardiography. In vivo cardiac pressure-volume studies revealed near doubling of isovolumic relaxation prolongation with increasing afterload in TG animals (P < 0.001), and this remained elevated despite isoproterenol infusion (PKA stimulation). Increasing heart rate from 400 to 700 beats/min elevated contractility 13% in TG hearts, nearly half the response observed in nontransgenic animals (P = 0.005). This blunted frequency response was normalized by isoproterenol infusion. Abnormal TnI phosphorylation observed in cardiac failure may explain exacerbated relaxation delay in response to increased afterload and contribute to blunted chronotropic reserve.  相似文献   
110.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of “nucleocytoplasmic coagulation.” Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation. Despite the fact that disulfide cross-linking is a prominent feature of GAPDH aggregation, our data show that it is not a primary rate-determining step. To identify the true instigating event of GAPDH misfolding, we mapped the post-translational modifications that arise during its aggregation. Solvent accessibility and energy calculations of the mapped modifications within the context of the high resolution native GAPDH structure suggested that oxidation of methionine 46 may instigate aggregation. We confirmed this by mutating methionine 46 to leucine, which rendered GAPDH highly resistant to free radical-induced aggregation. Molecular dynamics simulations suggest that oxidation of methionine 46 triggers a local increase in the conformational plasticity of GAPDH that likely promotes further oxidation and eventual aggregation. Hence, methionine 46 represents a “linchpin” whereby its oxidation is a primary event permissive for the subsequent misfolding, aggregation, and disulfide cross-linking of GAPDH. A critical role for linchpin residues in nucleocytoplasmic coagulation and other forms of free radical-induced protein misfolding should now be investigated. Furthermore, because disulfide-cross-linked aggregates of GAPDH arise in many disorders and because methionine 46 is irrelevant to native GAPDH function, mutation of methionine 46 in models of disease should allow the unequivocal assessment of whether GAPDH aggregation influences disease progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号