首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3775篇
  免费   283篇
  4058篇
  2023年   15篇
  2022年   35篇
  2021年   62篇
  2020年   38篇
  2019年   57篇
  2018年   64篇
  2017年   66篇
  2016年   90篇
  2015年   154篇
  2014年   197篇
  2013年   205篇
  2012年   263篇
  2011年   292篇
  2010年   162篇
  2009年   181篇
  2008年   217篇
  2007年   244篇
  2006年   215篇
  2005年   207篇
  2004年   193篇
  2003年   181篇
  2002年   172篇
  2001年   52篇
  2000年   42篇
  1999年   55篇
  1998年   52篇
  1997年   37篇
  1996年   27篇
  1995年   49篇
  1994年   33篇
  1993年   37篇
  1992年   26篇
  1991年   34篇
  1990年   42篇
  1989年   29篇
  1988年   32篇
  1987年   18篇
  1986年   16篇
  1985年   12篇
  1984年   11篇
  1983年   11篇
  1982年   15篇
  1981年   14篇
  1980年   14篇
  1979年   7篇
  1978年   9篇
  1977年   12篇
  1976年   9篇
  1971年   9篇
  1970年   9篇
排序方式: 共有4058条查询结果,搜索用时 0 毫秒
991.
Developing new biopolymer-based materials with bio-identical properties is a significant challenge in modern science. One interesting route to this goal involves the biomineralization of collagen, a pre-structured and widely available protein, into a material with interesting properties. A prerequisite for biomineralization is the ability of cations (e.g., calcium) to bind to the protein and to result in concert with appropriate anions (e.g., phosphate) in composite material with e.g., bone-like properties. In order to increase the number of binding sites it is necessary to modify the protein prior to mineralization. For this glucuronic acid (GA) was used due to its carbonyl and carboxyl groups to derivatize proteinogenic amino groups transferring them into negatively charged carboxyl groups. Our experiments showed for the first time, that Nepsilon-carboxymethyllysine is the major product of in vitro non-enzymatic glycosylation of collagen by glucuronic acid. For an unequivocal determination of the reaction products, the lysine residues of collagen and of the model peptide were carboxymethylated through a reductive alkylation with glyoxalic acid and compared to the glucuronic acid derivatives. Beside their identical mass spectra the common structure elements could be confirmed with FTIR. Thus, in the context of matrix engineering, by producing Nepsilon-carboxymethyllysine, glucuronic acid offers a convenient way of introducing additional stable acidic groups into protein matrices.  相似文献   
992.
We analyzed morphological and immunohistochemical features in 174 aggressive B-cell lymphomas of nodal and extranodal origin. Morphological features included presence or absence of a follicular component and cytologic criteria according to the Kiel classification, whereas immunohistochemical studies included expression of CD10, BCL-2, BCL-6, IRF4/MUM1, HLA-DR, p53, Ki-67 and the assessment of plasmacytoid differentiation. Patients were treated with a CHOP-like regimen. While the presence or absence of either CD10, BCL-6 and IRF4/MUM1 reactivity or plasmacytoid differentiation did not identify particular cytomorphologic or site-specific subtypes, we found that expression of CD10 and BCL-6, and a low reactivity for IRF4/MUM1 were favourable prognostic indicators. In contrast, BCL-2 expression and presence of a monotypic cytoplasmic immunoglobulin expression was associated with an unfavourable prognosis in univariate analyses. Meta-analysis of these data resulted in the development of a cumulative immunohistochemical outcome predictor score (CIOPS) enabling the recognition of four distinct prognostic groups. Multivariate analysis proved this score to be independent of the international prognostic index. Such a cumulative immunohistochemical scoring approach might provide a valuable alternative in the recognition of defined risk types of aggressive B-cell lymphomas.  相似文献   
993.
994.
995.
Because the regeneration of large bone defects is limited by quantitative restrictions and risks of infections, the development of bioartificial bone substitutes is of great importance. To obtain a three‐dimensional functional tissue‐like graft, static cultivation is inexpedient due to limitations in cell density, nutrition and oxygen support. Dynamic cultivation in a bioreactor system can overcome these restrictions and furthermore provide the possibility to control the environment with regard to pH, oxygen content, and temperature. In this study, a three‐dimensional bone construct was engineered by the use of dynamic bioreactor technology. Human adipose tissue derived mesenchymal stem cells were cultivated on a macroporous zirconium dioxide based ceramic disc called Sponceram®. Furthermore, hydroxyapatite coated Sponceram® was used. The cells were cultivated under dynamic conditions and compared with statically cultivated cells. The differentiation into osteoblasts was initiated by osteogenic supplements. Cellular proliferation during static and dynamic cultivation was compared measuring glucose and lactate concentration. The differentiation process was analysed determining AP‐expression and using different specific staining methods. Our results demonstrate much higher proliferation rates during dynamic conditions in the bioreactor system compared to static cultivation measured by glucose consumption and lactate production. Cell densities on the scaffolds indicated higher proliferation on native Sponceram® compared to hydroxyapatite coated Sponceram®. With this study, we present an excellent method to enhance cellular proliferation and bone lineage specific growth of tissue like structures comprising fibrous (collagen) and globular (mineral) extracellular components. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
996.
Pichia pastoris (Pp) Pex8p, the only known intraperoxisomal peroxin at steady state, is targeted to peroxisomes by either the peroxisomal targeting signal (PTS) type 1 or PTS2 pathway. Until recently, all cargoes entering the peroxisome matrix were believed to require the docking and really interesting new gene (RING) subcomplexes, proteins that bridge these two subcomplexes and the PTS receptor-recycling machinery. However, we reported recently that the import of PpPex8p into peroxisomes via the PTS2 pathway is Pex14p dependent but independent of the RING subcomplex (Zhang et al., 2006 ). In further characterizing the peroxisome membrane-associated translocon, we show that two other components of the docking subcomplex, Pex13p and Pex17p, are dispensable for the import of Pex8p. Moreover, we demonstrate that the import of Pex8p via the PTS1 pathway also does not require the RING subcomplex or intraperoxisomal Pex8p. In receptor-recycling mutants (Δpex1, Δpex6, and Δpex4), Pex8p is largely cytosolic because Pex5p and Pex20p are unstable. However, upon overexpression of the degradation-resistant Pex20p mutant, hemagglutinin (HA)-Pex20p(K19R), in Δpex4 and Δpex6 cells, Pex8p enters peroxisome remnants. Our data support the idea that PpPex8p is a special cargo whose translocation into peroxisomes depends only on the PTS receptors and Pex14p and not on intraperoxisomal Pex8p, the RING subcomplex, or the receptor-recycling machinery.  相似文献   
997.
Structural analogues of vitamin D have been put forward as therapeutic agents able to exploit the immunomodulatory effects of vitamin D, without its undesired calcemic side effects. We have demonstrated that TX527 affects dendritic cell (DC) maturation in vitro, resulting in the generation of a tolerogenic cell. In the present study, we aimed to explore the global protein changes induced by the analogue in immature DC (iDC) and mature human DC and to correlate them with alterations in DC morphology and function. Human CD14+ monocytes were differentiated toward iDC or mature DCs, in the presence or absence of TX527 (10?8 M) (n=4). Protein samples were separated into two different pH ranges (pH4–7 and 6–9), analyzed by 2‐D DIGE and differentially expressed spots (p<0.01) were identified by MALDI‐TOF/TOF (76.3 and 70.7% in iDC and mature DCs, respectively). Differential protein expression revealed three protein groups predominantly affected by TX527 treatment, namely proteins involved in cytoskeleton structure, in protein biosynthesis/proteolysis and in metabolism. Moreover, protein interactome‐network analysis demonstrated close interaction between these different groups (p<0.001) and morphological and functional analyses confirmed the integrated effect of TX527 on human DCs, resulting in a cell with altered morphology, cell surface marker expression, endocytic and migratory capacity.  相似文献   
998.
999.
Many apicomplexan parasites, including Plasmodium falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event. The exact molecular mechanisms directing the transport of nuclear-encoded proteins to the apicoplast of P. falciparum are not well understood. Recently, in silico analyses revealed a second copy of proteins homologous to components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) system in organisms with secondary plastids, including the malaria parasite P. falciparum. These proteins are predicted to be endowed with an apicoplast targeting signal and are suggested to play a role in the transport of nuclear-encoded proteins to the apicoplast. Here, we have studied components of this ERAD-derived putative preprotein translocon complex in malaria parasites. Using transfection technology coupled with fluorescence imaging techniques we can demonstrate that the N terminus of several ERAD-derived components targets green fluorescent protein to the apicoplast. Furthermore, we confirm that full-length PfsDer1-1 and PfsUba1 (homologues of yeast ERAD components) localize to the apicoplast, where PfsDer1-1 tightly associates with membranes. Conversely, PfhDer1-1 (a host-specific copy of the Der1-1 protein) localizes to the ER. Our data suggest that ERAD components have been “rewired” to provide a conduit for protein transport to the apicoplast. Our results are discussed in relation to the nature of the apicoplast protein transport machinery.The apicomplexan parasite Plasmodium falciparum is the etiological agent of malaria tropica, the most severe form of human malaria, responsible for over 250 million infections and 1 million deaths annually (61). Many apicomplexan parasites, including P. falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event (27, 58). Although during the course of evolution this plastid organelle has lost the ability to carry out photosynthesis, it is still the site of several important biochemical pathways, including isoprenoid and heme biosynthesis, and as such is essential for parasite survival (60). As in other plastids, the vast majority of genes originally encoded on the plastid genome have been transferred to the nucleus of the host. As a result, their gene products (predicted to constitute up to 10% of all nucleus-encoded proteins) must be imported back into the apicoplast (12). The apicoplast is surrounded by four membranes (55), and this protein import process thus represents a major cell biological challenge and has attracted much research interest, not least due to the importance of P. falciparum as a human pathogen (16, 50).The signals directing transport of nucleus-encoded proteins to complex plastids, including the apicomplexan apicoplast, have been studied in great detail in recent years, and reveal that such proteins are endowed with specific N-terminal targeting sequences, referred to as a bipartite topogenic signals (BTS), that direct their transport to this compartment (50). BTS are composed of an N-terminal endoplasmic reticulum (ER)-type signal sequence, which initially allows proteins to enter the secretory system via the Sec61 complex (59). Following this, proteins are carried via a Golgi complex-independent transport step to the second outermost membrane, from where they are then translocated across the remaining three apicoplast membranes, directed by the second part of the BTS, the transit peptide (51). Based on evolutionary considerations, it has long been suggested that transport across the inner two apicoplast membranes occurs via a Toc/Tic-like (where Toc and Tic are translocons of the outer and inner chloroplast envelopes, respectively) protein translocase machinery, and this is supported by a recent publication that provides evidence for an essential role of a Toxoplasma gondii Tic20 homologue in this transport process (50, 57). Despite this progress, it is still unclear how proteins travel across the second and third outer apicoplast membranes. Several models have been discussed to account for this transport step, including vesicular shuttle and translocon-based mechanisms (recently reviewed in reference 19), but until recently no actual molecular equipment had been found which could account for these membrane translocation events. To address this question, Sommer et al. screened the nucleomorph genome of the chromalveolate cryptophyte Guillardia theta (which, similar to P. falciparum, contains a four-membrane-bound plastid organelle) for genes encoding potential translocon-related proteins (49). Surprisingly, the authors identified genes encoding proteins usually involved in the ER-associated protein degradation pathway (ERAD), which recognizes incorrectly folded protein substrates and retrotranslocates them to the cell cytosol for degradation by the ubiquitin (Ub)-proteasome system (35, 44). As such, the ERAD system functions as a translocation complex, capable of transporting proteins across a biological membrane. Further characterization of one of these proteins (G. theta Der1-1, a homologue of yeast Der1p, a component of the ERAD system) provided strong evidence for a plastid localization. These data suggested an attractive solution to the mechanistic problem of transport across the second and third outermost membrane of complex plastids by hypothesizing a role for an ERAD-derived protein translocon complex. Intriguingly, this study also identified several members of this ERAD-derived translocon complex (apicoplast ERAD [apERAD]) in the nuclear genome of P. falciparum endowed with an N-terminal BTS (49). The BTS derived from one of these proteins, P. falciparum sDer1-1 [PfsDer1-1], was sufficient to direct transport of green fluorescent protein (GFP) to the apicoplast of P. falciparum, suggesting that this ERAD-like machinery is ubiquitous among chromalveolates with four membrane-bound plastids (49). In this current report we extend our study of the P. falciparum apERAD complex.  相似文献   
1000.
During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1β and G-CSF as well as reduced levels of anti-inflammatory TGF-β. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号