首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1248篇
  免费   66篇
  1314篇
  2023年   8篇
  2022年   14篇
  2021年   18篇
  2020年   14篇
  2019年   17篇
  2018年   24篇
  2017年   20篇
  2016年   34篇
  2015年   58篇
  2014年   83篇
  2013年   66篇
  2012年   96篇
  2011年   84篇
  2010年   49篇
  2009年   38篇
  2008年   70篇
  2007年   59篇
  2006年   55篇
  2005年   44篇
  2004年   40篇
  2003年   30篇
  2002年   36篇
  2001年   19篇
  2000年   24篇
  1999年   32篇
  1998年   15篇
  1997年   10篇
  1996年   9篇
  1995年   14篇
  1994年   11篇
  1993年   12篇
  1992年   12篇
  1991年   17篇
  1990年   18篇
  1989年   13篇
  1988年   16篇
  1987年   9篇
  1985年   6篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   8篇
  1974年   7篇
  1972年   8篇
  1971年   6篇
  1969年   5篇
  1966年   10篇
排序方式: 共有1314条查询结果,搜索用时 15 毫秒
991.
Candida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein mannosylation may play a key role in alterations of phagosomal properties caused by C. glabrata.  相似文献   
992.
In recent years, several studies have reported the successful extraction of ancient DNA (aDNA) from both frozen and nonfrozen sediments (even in the absence of macrofossils) in order to obtain genetic "profiles" from past environments. One of the hazards associated with this approach, particularly in nonfrozen environments, is the potential for vertical migration of aDNA across strata. To assess the extent of this problem, we extracted aDNA from sediments up to 3300 years old at 2 cave sites in the North Island of New Zealand. These sites are ideal for this purpose as the presence or absence of DNA from nonindigenous fauna (such as sheep) in sediments deposited prior to European settlement can serve as an indicator of DNA movement. Additionally, these strata are well defined and dated. DNA from sheep was found in strata that also contained moa DNA, indicating that genetic material had migrated downwards. Quantitative polymerase chain reaction analyses demonstrated that the amount of sheep DNA decreased as the age of sediments increased. Our results suggest that sedimentary aDNA is unlikely to be deposited from wind-borne DNA and that physical remains of organisms or their ejecta need to have been incorporated in the sediments for their DNA to be detected. Our study indicates that DNA from sediments can still offer a rich source of information on past environments, provided that the risk from vertical migration can be controlled for.  相似文献   
993.
Functional and quantitative analysis of splenic T cell immune responses following oral Toxoplasma gondii infection in mice. Experimental Parasitology 91, 212-221. Immunity to Toxoplasma gondii is mediated primarily by the host T cell response. Although there is considerable information regarding host immunity following intraperitoneal infection with tachyzoites, little information is available regarding naturally acquired infection following peroral infection with bradyzoites. In this study, a sequential quantitative analysis of the cell-mediated immune response was performed at the single cell level. To assess the kinetics of this response and parasitic loads, inbred mice were orally infected with the 76K strain bradyzoites of T. gondii. Within 24 h of infection, follicular hyperplasia followed by infiltration with histiocytes, macrophages, and apoptotic bodies was observed in the spleens of infected mice. T. gondii were detected from day 1, and counts increased gradually during the experimental period. Splenocyte DNA synthesis to antigen and mitogen was severely suppressed at days 7 and 10. The percentages of NK1.1(+) or delta gamma T cells were increased from day 1, whereas CD4(+) and CD8alpha+ T cells were signficantly increased after day 7 postinfection. CD25 expression and intracellular IFN-gamma production increased in NK1.1(+) cells on day 1 and by all other T cell subsets after day 4. Intracellular IL-4 did not increase until day 7, and IL-10 production was increased in all T cell subsets after day 4. Together, these findings indicate that oral infection with T. gondii stimulates a strong cellular immune response that appears to polarize toward an early Th1 response. However, within 7 days, a strong immune Th2 regulatory response as well as high parasitic loads can be observed, with a reduction in lymphoproliferation to mitogen stimulation, increased production of IL-4 and IL-10, and evidence of T cell apoptosis in the splenic immune compartment.  相似文献   
994.
To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization. This was supported by FRAP measurements that revealed a lower D and a mobile fraction of the YFP-DAT in N2a cells compared to HEK293 cells. Comparison with the EGFP-EGFR (epidermal growth factor receptor) and the EGFP-beta2AR (beta2 adrenergic receptor) demonstrated that this observation was DAT specific. Both the cytoskeleton-disrupting agent cytochalasin D and the cholesterol-depleting agent methyl-beta-cyclodextrin (mbetaCD) increased the lateral mobility of the YFP-DAT but not that of the EGFP-EGFR. The DAT associated in part with membrane raft markers both in the N2a cells and in rat striatal synaptosomes as assessed by sucrose density gradient centrifugation. Raft association was further confirmed in the N2a cells by cholera toxin B patching. It was, moreover, observed that cholesterol depletion, and thereby membrane raft disruption, decreased both the Vmax and KM values for [3H]dopamine uptake without altering DAT surface expression. In summary, we propose that association of the DAT with lipid microdomains in the plasma membrane and/or the cytoskeleton serves to regulate both the lateral mobility of the transporter and its transport capacity.  相似文献   
995.
Candida glabrata is one of the most common causes of candidemia, a life-threatening, systemic fungal infection, and is surpassed in frequency only by Candida albicans. Major factors contributing to the success of this opportunistic pathogen include its ability to readily acquire resistance to antifungals and to colonize and adapt to many different niches in the human body. Here we addressed the flexibility and adaptability of C. glabrata during interaction with macrophages with a serial passage approach. Continuous co-incubation of C. glabrata with a murine macrophage cell line for over six months resulted in a striking alteration in fungal morphology: The growth form changed from typical spherical yeasts to pseudohyphae-like structures – a phenotype which was stable over several generations without any selective pressure. Transmission electron microscopy and FACS analyses showed that the filamentous-like morphology was accompanied by changes in cell wall architecture. This altered growth form permitted faster escape from macrophages and increased damage of macrophages. In addition, the evolved strain (Evo) showed transiently increased virulence in a systemic mouse infection model, which correlated with increased organ-specific fungal burden and inflammatory response (TNFα and IL-6) in the brain. Similarly, the Evo mutant significantly increased TNFα production in the brain on day 2, which is mirrored in macrophages confronted with the Evo mutant, but not with the parental wild type. Whole genome sequencing of the Evo strain, genetic analyses, targeted gene disruption and a reverse microevolution experiment revealed a single nucleotide exchange in the chitin synthase-encoding CHS2 gene as the sole basis for this phenotypic alteration. A targeted CHS2 mutant with the same SNP showed similar phenotypes as the Evo strain under all experimental conditions tested. These results indicate that microevolutionary processes in host-simulative conditions can elicit adaptations of C. glabrata to distinct host niches and even lead to hypervirulent strains.  相似文献   
996.
The polysialic acid (PSA) production in Escherichia coli (E. coli) K1 was studied using three different cultivation strategies. A batch cultivation, a fed-batch cultivation at a constant specific growth rate of 0.25 h−1 and a fed-batch cultivation at a constant glucose concentration of 50 mg l−1 was performed. PSA formation kinetics under different cultivation strategies were analyzed based on the Monod growth model and the Luedeking-Piret equation. The results revealed that PSA formation in E. coli K1 was completely growth associated, the highest specific PSA formation rate (0.0489 g g−1 h−1) was obtained in the batch cultivation. However, comparing biomass and PSA yields on the glucose consumed, both fed-batch cultivations provided higher yields than that of the batch cultivation and acetate formation was prevented. Moreover, PSA yield on glucose was also correlated to the specific growth rate of the cells. The optimal specific growth rate for PSA production was 0.32 h−1 obtained in the fed-batch cultivation at a constant glucose concentration of 50 mg l−1, with highest conversion efficiency of 43 mg g−1.  相似文献   
997.
The purpose of this study was to determine the effects of diamide, a reversible sulfhydryl oxidizing agent, on the transport of serotonin (5-HT) by mouse platelets. Diamide produced a concentration-dependent (10–200 μM) stimulation of 5-HT transport that was rapid and sustained over 0–10 minutes of incubation. When platelets were incubated with diamide (10–200 μM) in the presence of glucose, the content of reduced glutathione was significantly decreased only at a final concentration of 200 μM, while washed platelets incubated with diamide (10–200 μM), in the absence of glucose, had a significant concentration-dependent decrease in their content of reduced glutathione. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked diamide-induced stimulation of 5-HT transport. The kinetics of 5-HT transport showed that diamide caused a marked increase in the maximal rate of transport (Vmax control = 28.4 ± 1.4 vs. Vmax diamide = 60.9 ± 4.1 pM/108 platelets/4 min) but did not significantly alter the Km values. Ouabain, an inhibitor of platelet Na+-K+ ATPase, blocked the stimulation by diamide in a concentration-dependent manner. Dithiothreitol, a disulfide reducing agent, was able to partially reverse the stimulation of platelet 5-HT transport caused by diamide. This study has shown that diamide can stimulate the active transport of 5-HT by mouse platelets and suggests a possible role for free sulfhydryl groups in the regulation of this process.  相似文献   
998.
999.
Skeletal muscle fibre transitions occur in many biological processes, in response to alterations in neuromuscular activity, in muscular disorders, during age-induced muscle wasting and in myogenesis. It was therefore of interest to perform a comprehensive proteomic profiling of muscle transformation. Chronic low-frequency stimulation of the rabbit tibialis anterior muscle represents an established model system for studying the response of fast fibres to enhanced neuromuscular activity under conditions of maximum activation. We have conducted a DIGE analysis of unstimulated control specimens versus 14- and 60-day conditioned muscles. A differential expression pattern was observed for 41 protein species with 29 increased and 12 decreased muscle proteins. Identified classes of proteins that are changed during the fast-to-slow transition process belong to the contractile machinery, ion homeostasis, excitation-contraction coupling, capillarization, metabolism and stress response. Results from immunoblotting agreed with the conversion of the metabolic, regulatory and contractile molecular apparatus to support muscle fibres with slower twitch characteristics. Besides confirming established muscle elements as reliable transition markers, this proteomics-based study has established the actin-binding protein cofilin-2 and the endothelial marker transgelin as novel biomarkers for evaluating muscle transformation.  相似文献   
1000.

Background

Low bone mass is prevalent in ambulatory multiple sclerosis (MS) patients even shortly after clinical onset. The mechanism is not known, but could involve shared etiological risk factors between MS and low bone mass such as hypovitaminosis D operating before disease onset, or increased bone loss after disease onset. The aim of this study was to explore the mechanism of the low bone mass in early-stage MS patients.

Methodology/Principal Findings

We performed a population-based case-control study comparing bone turnover (cross-linked N-terminal telopeptide of type 1 collagen; NTX, bone alkaline phosphatase; bALP), metabolism (25-hydroxy- and 1, 25-dihydroxyvitamin D, calcium, phosphate, and parathyroid hormone), and relevant lifestyle factors in 99 patients newly diagnosed with clinically isolated syndrome (CIS) or MS, and in 159 age, sex, and ethnicity matched controls. After adjustment for possible confounders, there were no significant differences in NTX (mean 3.3; 95% CI −6.9, 13.5; p = 0.519), bALP (mean 1.6; 95% CI −0.2, 3.5; p = 0.081), or in any of the parameters related to bone metabolism in patients compared to controls. The markers of bone turnover and metabolism were not significantly correlated with bone mass density, or associated with the presence of osteoporosis or osteopenia within or between the patient and control groups. Intake of vitamin D and calcium, reported UV exposure, and physical activity did not differ significantly.

Conclusions/Significance

Bone turnover and metabolism did not differ significantly in CIS and MS patients with prevalent low bone mass compared to controls. These findings indicate that the bone deficit in patients newly diagnosed with MS and CIS is not caused by recent acceleration of bone loss, and are compatible with shared etiological factors between MS and low bone mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号