首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   10篇
  2011年   5篇
  2010年   9篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
41.
Poxviruses express highly active inhibitors, including serine proteinase inhibitors (serpins), designed to target host immune defense pathways. Recent work has demonstrated clinical efficacy for a secreted, myxomaviral serpin, Serp-1, which targets the thrombotic and thrombolytic proteases, suggesting that other viral serpins may have therapeutic application. Serp-2 and CrmA are intracellular cross-class poxviral serpins, with entirely distinct functions from the Serp-1 protein. Serp-2 and CrmA block the serine protease granzyme B (GzmB) and cysteine proteases, caspases 1 and 8, in apoptotic pathways, but have not been examined for extracellular anti-inflammatory activity. We examined the ability of these cross-class serpins to inhibit plaque growth after arterial damage or transplant and to reduce leukocyte apoptosis. We observed that purified Serp-2, but not CrmA, given as a systemic infusion after angioplasty, transplant, or cuff-compression injury markedly reduced plaque growth in mouse and rat models in vivo. Plaque growth was inhibited both locally at sites of surgical trauma, angioplasty or transplant, and systemically at non-injured sites in ApoE-deficient hyperlipidemic mice. With analysis in vitro of human cells in culture, Serp-2 selectively inhibited T cell caspase activity and blocked cytotoxic T cell (CTL) mediated killing of T lymphocytes (termed fratricide). Conversely, both Serp-2 and CrmA inhibited monocyte apoptosis. Serp-2 inhibitory activity was significantly compromised either in vitro with GzmB antibody or in vivo in ApoE/GzmB double knockout mice. Conclusions The viral cross-class serpin, Serp-2, that targets both apoptotic and inflammatory pathways, reduces vascular inflammation in a GzmB-dependent fashion in vivo, and inhibits human T cell apoptosis in vitro. These findings indicate that therapies targeting Granzyme B and/or T cell apoptosis may be used to inhibit T lymphocyte apoptosis and inflammation in response to arterial injury.  相似文献   
42.
Transforming growth factor-β (TGFβ) promotes glomerular hypertrophy and matrix expansion, leading to glomerulosclerosis. MicroRNAs are well suited to promote fibrosis because they can repress gene expression, which negatively regulate the fibrotic process. Recent cellular and animal studies have revealed enhanced expression of microRNA, miR-21, in renal cells in response to TGFβ. Specific miR-21 targets downstream of TGFβ receptor activation that control cell hypertrophy and matrix protein expression have not been studied. Using 3'UTR-driven luciferase reporter, we identified the tumor suppressor protein PTEN as a target of TGFβ-stimulated miR-21 in glomerular mesangial cells. Expression of miR-21 Sponge, which quenches endogenous miR-21 levels, reversed TGFβ-induced suppression of PTEN. Additionally, miR-21 Sponge inhibited TGFβ-stimulated phosphorylation of Akt kinase, resulting in attenuation of phosphorylation of its substrate GSK3β. Tuberin and PRAS40, two other Akt substrates, and endogenous inhibitors of mTORC1, regulate mesangial cell hypertrophy. Neutralization of endogenous miR-21 abrogated TGFβ-stimulated phosphorylation of tuberin and PRAS40, leading to inhibition of phosphorylation of S6 kinase, mTOR and 4EBP-1. Moreover, downregulation of miR-21 significantly suppressed TGFβ-induced protein synthesis and hypertrophy, which were reversed by siRNA-targeted inhibition of PTEN expression. Similarly, expression of constitutively active Akt kinase reversed the miR-21 Sponge-mediated inhibition of TGFβ-induced protein synthesis and hypertrophy. Furthermore, expression of constitutively active mTORC1 prevented the miR-21 Sponge-induced suppression of mesangial cell protein synthesis and hypertrophy by TGFβ. Finally, we show that miR-21 Sponge inhibited TGFβ-stimulated fibronectin and collagen expression. Suppression of PTEN expression and expression of both constitutively active Akt kinase and mTORC1 independently reversed this miR-21-mediated inhibition of TGFβ-induced fibronectin and collagen expression. Our results uncover an essential role of TGFβ-induced expression of miR-21, which targets PTEN to initiate a non-canonical signaling circuit involving Akt/mTORC1 axis for mesangial cell hypertrophy and matrix protein synthesis.  相似文献   
43.
In light of the worldwide epidemic of obesity, and in recognition of hypertension as a major factor in the cardiovascular morbidity and mortality associated with obesity, The Obesity Society and The American Society of Hypertension agreed to jointly sponsor a position paper on obesity‐related hypertension to be published jointly in the journals of each society. The purpose is to inform the members of both societies, as well as practicing clinicians, with a timely review of the association between obesity and high blood pressure, the risk that this association entails, and the options for rational, evidenced‐based treatment. The position paper is divided into six sections plus a summary as follows: pathophysiology, epidemiology and cardiovascular risk, the metabolic syndrome, lifestyle management in prevention and treatment, pharmacologic treatment of hypertension in the obese, and the medical and surgical treatment of obesity in obese hypertensive patients. Obesity (2012)  相似文献   
44.
45.
Transforming growth factorβ (TGFβ)‐induced canonical signal transduction is involved in glomerular mesangial cell hypertrophy; however, the role played by the noncanonical TGFβ signaling remains largely unexplored. TGFβ time‐dependently stimulated eIF4E phosphorylation at Ser‐209 concomitant with enhanced phosphorylation of Erk1/2 (extracellular signal regulated kinase1/2) and MEK (mitogen‐activated and extracellular signal‐regulated kinase kinase) in mesangial cells. Inhibition of Erk1/2 by MEK inhibitor or by expression of dominant negative Erk2 blocked eIF4E phosphorylation, resulting in attenuation of TGFβ‐induced protein synthesis and mesangial cell hypertrophy. Expression of constitutively active (CA) MEK was sufficient to induce protein synthesis and hypertrophy similar to those induced by TGFβ. Pharmacological or dominant negative inhibition of phosphatidylinositol (PI) 3 kinase decreased MEK/Erk1/2 phosphorylation leading to suppression of eIF4E phosphorylation. Inducible phosphorylation of eIF4E at Ser‐209 is mediated by Mnk‐1 (mitogen‐activated protein kinase signal‐integrating kinase‐1). Both PI 3 kinase and Erk1/2 promoted phosphorylation of Mnk‐1 in response to TGFβ. Dominant negative Mnk‐1 significantly inhibited TGFβ‐stimulated protein synthesis and hypertrophy. Interestingly, inhibition of mTORC1 activity, which blocks dissociation of eIF4E‐4EBP‐1 complex, decreased TGFβ‐stimulated phosphorylation of eIF4E without any effect on Mnk‐1 phosphorylation. Furthermore, mutant eIF4E S209D, which mimics phosphorylated eIF4E, promoted protein synthesis and hypertrophy similar to TGFβ. These results were confirmed using phosphorylation deficient mutant of eIF4E. Together our results highlight a significant role of dissociation of 4EBP‐1‐eIF4E complex for Mnk‐1‐mediated phosphorylation of eIF4E. Moreover, we conclude that TGFβ‐induced noncanonical signaling circuit involving PI 3 kinase‐dependent Mnk‐1‐mediated phosphorylation of eIF4E at Ser‐209 is required to facilitate mesangial cell hypertrophy. J. Cell. Physiol. 228: 1617–1626, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
46.
The thrombolytic serine protease cascade is intricately involved in activation of innate immune responses. The urokinase-type plasminogen activator and receptor form complexes that aid inflammatory cell invasion at sites of arterial injury. Plasminogen activator inhibitor-1 is a mammalian serpin that binds and regulates the urokinase receptor complex. Serp-1, a myxomaviral serpin, also targets the urokinase receptor, displaying profound anti-inflammatory and anti-atherogenic activity in a wide range of animal models. Serp-1 reactive center site mutations, mimicking known mammalian and viral serpins, were constructed in order to define sequences responsible for regulation of inflammation. Thrombosis, inflammation, and plaque growth were assessed after treatment with Serp-1, Serp-1 chimeras, plasminogen activator inhibitor-1, or unrelated viral serpins in plasminogen activator inhibitor or urokinase receptor-deficient mouse aortic transplants. Altering the P1-P1' Arg-Asn sequence compromised Serp-1 protease-inhibitory activity and anti-inflammatory activity in animal models; P1-P1' Ala-Ala mutants were inactive, P1 Met increased remodeling, and P1' Thr increased thrombosis. Substitution of Serp-1 P2-P7 with Ala6 allowed for inhibition of urokinase but lost plasmin inhibition, unexpectedly inducing a diametrically opposed, proinflammatory response with mononuclear cell activation, thrombosis, and aneurysm formation (p < 0.03). Other serpins did not reproduce Serp-1 activity; plasminogen activator inhibitor-1 increased thrombosis (p < 0.0001), and unrelated viral serpin, CrmA, increased inflammation. Deficiency of urokinase receptor in mouse transplants blocked Serp-1 and chimera activity, in some cases increasing inflammation. In summary, 1) Serp-1 anti-inflammatory activity is highly dependent upon the reactive center loop sequence, and 2) plasmin inhibition is central to anti-inflammatory activity.  相似文献   
47.
48.
49.
eEF2 phosphorylation is under tight control to maintain mRNA translation elongation. We report that TGFβ activates eEF2 by decreasing eEF2 phosphorylation and simultaneously increasing eEF2 kinase phosphorylation. Remarkably, inhibition of Erk1/2 blocked the TGFβ-induced dephosphorylation and phosphorylation of eEF2 and eEF2 kinase. TGFβ increased phosphorylation of p90Rsk in an Erk1/2-dependent manner. Inactive p90Rsk reversed TGFβ-inhibited phosphorylation of eEF2 and suppressed eEF2 kinase activity. Finally, inactive p90Rsk significantly attenuated TGFβ-induced protein synthesis and hypertrophy of mesangial cells. These results present the first evidence that TGFβ utilizes the two layered kinase module Erk/p90Rsk to activate eEF2 for increased protein synthesis during cellular hypertrophy.  相似文献   
50.
Vascular endothelial growth factor (VEGF) increases protein synthesis and induces hypertrophy in renal tubular epithelial cells (Senthil, D., Choudhury, G. G., McLaurin, C., and Kasinath, B. S. (2003) Kidney Int. 64, 468-479). We examined the role of Erk1/2 MAP kinase in protein synthesis induced by VEGF. VEGF stimulated Erk phosphorylation that was required for induction of protein synthesis. VEGF-induced Erk activation was not dependent on phosphoinositide (PI) 3-kinase activation but required sequential phosphorylation of type 2 VEGF receptor, PLCgamma and c-Src, as demonstrated by inhibitors SU1498, U73122, and PP1, respectively. c-Src phosphorylation was inhibited by U73122, indicating it was downstream of phospholipase (PL)Cgamma. Studies with PP1/2 showed that phosphorylation of c-Src was required for tyrosine phosphorylation of Raf-1, an upstream regulator of Erk. VEGF also stimulated phosphorylation of Pyk-2; VEGF-induced phosphorylation of Pyk2, c-Src and Raf-1 could be abolished by BAPTA/AM, demonstrating requirement for induction of intracellular calcium currents. We examined the downstream events following the phosphorylation of Erk. VEGF stimulated phosphorylation of Mnk1 and eIF4E and induced Mnk1 to shift from the cytoplasm to the nucleus upon phosphorylation. VEGF-induced phosphorylation of Mnk1 and eIF4E required phosphorylation of PLCgamma, c-Src, and Erk. Expression of dominant negative Mnk1 abrogated eIF4E phosphorylation and protein synthesis induced by VEGF. VEGF-stimulated protein synthesis could be blocked by inhibition of PLCgamma by a chemical inhibitor or expression of a dominant negative construct. Our data demonstrate that VEGF-stimulated protein synthesis is Erk-dependent and requires the activation of VEGF receptor 2, PLCgamma, c-Src, Raf, and Erk pathway. VEGF also stimulates Erk-dependent phosphorylation of Mnk1 and eIF4E, crucial events in the initiation phase of protein translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号