首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7446篇
  免费   561篇
  国内免费   5篇
  2023年   48篇
  2022年   119篇
  2021年   191篇
  2020年   92篇
  2019年   109篇
  2018年   156篇
  2017年   119篇
  2016年   222篇
  2015年   301篇
  2014年   338篇
  2013年   441篇
  2012年   584篇
  2011年   501篇
  2010年   307篇
  2009年   278篇
  2008年   399篇
  2007年   401篇
  2006年   357篇
  2005年   303篇
  2004年   299篇
  2003年   244篇
  2002年   208篇
  2001年   202篇
  2000年   174篇
  1999年   137篇
  1998年   62篇
  1997年   50篇
  1996年   37篇
  1995年   44篇
  1994年   41篇
  1993年   38篇
  1992年   95篇
  1991年   82篇
  1990年   86篇
  1989年   94篇
  1988年   66篇
  1987年   69篇
  1986年   71篇
  1985年   73篇
  1984年   61篇
  1983年   49篇
  1982年   43篇
  1981年   32篇
  1980年   31篇
  1979年   43篇
  1978年   32篇
  1976年   28篇
  1975年   28篇
  1974年   35篇
  1973年   36篇
排序方式: 共有8012条查询结果,搜索用时 15 毫秒
121.
To understand the effects of v-myb expression on mammalian hematopoietic cell differentiation, we have constructed a retroviral vector which can efficiently express v-myb gene product in mammalian cells. Infection of interleukin-3-dependent murine progenitor cell line 32D Cl3, which undergoes terminal differentiation to mature granulocytes in the presence of granulocyte colony-stimulating factor (GCSF), with this recombinant retrovirus does not abrogate its requirement of interleukin-3 for growth. However, expression of v-myb in these cells blocks their ability to differentiate in response to GCSF. Instead, the v-myb-infected cells proliferate indefinitely in the presence of GCSF. 32D Cl3 cells infected with empty vector carrying only the neomycin resistance gene responded to the addition of GCSF in a manner identical to that of the uninfected cells and underwent terminal differentiation into granulocytes. These results suggest that oncogenic forms of myb gene bring about transformation by blocking the differentiation signal derived by cytokines while promoting the proliferative signal transduction pathways.  相似文献   
122.
123.
A Rhodococcus sp. BPG-8 produces 1,2,4-benzenetriol during the transformation of resorcinol by phloroglucinol induced cell-free extract. The oxidation of 1,2,4-benzenetriol to 2-hydroxy-1,4-benzoquinone produces superoxide radicals that may have potential deleterious effects on cellular integrity. It has been shown that both superoxide dismutase (SOD) and catalase retard the autoxidation of 1,2,4-benzenetriol to 2-hydroxy-1,4-benzoquinone. Termination of the free radical chain reaction between superoxide radical and 1,2,4-benzenetriol seems to prevent this autoxidation. A NAD(P)H-dependent reductase appears to convert the 2-hydroxy-1,4-benzoquinone back to 1,2,4-benzenetriol. Both of these mechanisms appear to stabilize 1,2,4-benzenetriol so that it may be cleaved by meta cleavage enzymes. The enzymes responsible for the stabilization of 1,2,4-benzenetriol appear not to be inducible.  相似文献   
124.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   
125.
126.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
127.
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1H-NMR, 13C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g , respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds’ theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f .  相似文献   
128.
Projection of land use and land-cover change is highly uncertain yet drives critical estimates of carbon emissions, climate change, and food and bioenergy production. We use new, spatially explicit land availability data in conjunction with a model sensitivity analysis to estimate the effects of additional land protection on land use and land cover. The land availability data include protected land and agricultural suitability and is incorporated into the Moirai land data system for initializing the Global Change Analysis Model. Overall, decreasing land availability is relatively inefficient at preserving undeveloped land while having considerable regional land-use impacts. Current amounts of protected area have little effect on land and crop production estimates, but including the spatial distribution of unsuitable (i.e., unavailable) land dramatically shifts bioenergy production from high northern latitudes to the rest of the world, compared with uniform availability. This highlights the importance of spatial heterogeneity in understanding and managing land change. Approximately doubling the current protected area to emulate a 30% protected area target may avoid land conversion by 2050 of less than half the newly protected extent while reducing bioenergy feedstock land by 10.4% and cropland and grazed pasture by over 3%. Regional bioenergy land may be reduced (increased) by up to 46% (36%), cropland reduced by up to 61%, pasture reduced by up to 100%, and harvested forest reduced by up to 35%. Only a few regions show notable gains in some undeveloped land types of up to 36%. Half of the regions can reach the target using only unsuitable land, which would minimize impacts on agriculture but may not meet conservation goals. Rather than focusing on an area target, a more robust approach may be to carefully select newly protected land to meet well-defined conservation goals while minimizing impacts to agriculture.  相似文献   
129.
 The second-order rate constants for the oxidation of a series of phenol derivatives by horseradish peroxidase compound II were compared to computer-calculated chemical parameters characteristic for this reaction step. The phenol derivatives studied were phenol, 4-chlorophenol, 3-hydroxyphenol, 3-methylphenol, 4-methylphenol, 4-hydroxybenzoate, 4-methoxyphenol and 4-hydroxybenzaldehyde. Assuming a reaction of the phenolic substrates in their non-dissociated, uncharged forms, clear correlations (r = 0.977 and r = 0.905) were obtained between the natural logarithm of the second-order rate constants (ln k app and ln k 2 respectively) for their oxidation by compound II and their calculated ionisation potential, i.e. minus the energy of their highest occupied molecular orbital [E(HOMO)]. In addition to this first approach in which the quantitative structure-activity relationship (QSAR) was based on a calculated frontier orbital parameter of the substrate, in a second and third approach the relative heat of formation (ΔΔHF) calculated for the process of one-electron abstraction and H abstraction from the phenol derivatives was used as a parameter. Plots of the natural logarithms of the second-order rate constants (k app and k 2) for the reaction and the calculated ΔΔHF values for the process of one-electron abstraction also provide clear QSARs with correlation coefficients of –0.968 and –0.926 respectively. Plots of the natural logarithms of the second-order rate constants (k app and k 2) for the reaction and the calculated ΔΔHF values for the process of H abstraction provide QSARs with correlation coefficients of –0.989 and –0.922 respectively. Since both mechanisms considered, i.e. initial electron abstraction versus initial H abstraction, provided clear QSARs, the results could not be used to discriminate between these two possible mechanisms for phenol oxidation by horseradish peroxidase compound II. The computer calculation-based QSARs thus obtained for the oxidation of the various phenol derivatives by compound II from horseradish peroxidase indicate the validity of the approaches investigated, i.e. both the frontier orbital approach and the approach in which the process is described by calculated relative heats of formation. The results also indicate that outcomes from computer calculations on relatively unrelated phenol derivatives can be reliably compared to one another. Furthermore, as the actual oxidation of peroxidase substrates by compound II is known to be the rate-limiting step in the overall catalysis by horseradish peroxidase, the QSARs of the present study may have implications for the differences in the overall rate of substrate oxidation of the phenol derivatives by horseradish peroxidase. Received: 29 March 1996 / Accepted: 17 July 1996  相似文献   
130.
Abstract: Calcitonin gene-related peptide (CGRP), a 37-amino-acid peptide, is a member of a small family of peptides including amylin or islet amyloid polypeptide and salmon calcitonin. These related peptides have been shown to display similar effects on in vitro and in vivo carbohydrate metabolism. The present study was initiated to identify and characterize the binding sites for these peptides in lung and nucleus accumbens membranes prepared from pig and guinea pig. Both tissues in either species displayed high-affinity (2-[125I]iodohistidyl10)humanCGRPα ([125I]hCGRPα) binding (IC50 = 0.4–7.7 nM), which was displaced by hCGRP8–37α with equally high affinity (IC50 = 0.4–7.3 nM). High-affinity binding for [125I]Bolton-Hunter human amylin ([125I]BH-h-amylin) was also observed in these tissues (IC50 = 0.2–6.0 nM). In membranes from the nucleus accumbens of both species, salmon calcitonin competed for amylin binding sites with high affinity (IC50 = 0.1 nM) but was poor in competing for amylin binding in lung membranes. Rat amylin8–37 competed for [125I]hCGRPα binding with higher affinity (IC50 = 5.4 nM) compared with [125I]BH-h-amylin binding (IC50 = 200 nM) in porcine nucleus accumbens, whereas in guinea pig nucleus accumbens, the IC50 values for rat amylin8–37 were 117 and 12 nM against [125I]hCGRPα and [125I]BH-h-amylin, respectively. Also, functional studies evaluating the activation of adenylate cyclase and generation of cyclic AMP in response to these agonists indicated that hCGRPα (EC50 = 0.3 nM), h-amylin (EC50 = 150 nM), and salmon calcitonin (EC50 = 1,000 nM) activated adenylate cyclase, resulting in increased cyclic AMP production in porcine lung membranes that was antagonized by hCGRP8–37α. The affinity of hCGRP8–37α was similar for all three peptides. The cyclic AMP responses to amylin and salmon calcitonin were significantly (p < 0.05) lower than that of hCGRPα and not additive, suggesting that they are acting as partial agonists at the same CGRP1-type receptor in porcine lung membranes. Similar observations were made for guinea pig lung membranes. However, human amylin and salmon calcitonin were weaker than hCGRPα in activating lung adenylate cyclase. None of these peptides activated adenylate cyclase in membranes prepared from the nucleus accumbens of both species. The data from these studies demonstrate both species and tissue differences in the existence of distinct CGRP and amylin binding sites and present a potential opportunity to study further CGRP and amylin receptor subtypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号