首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   38篇
  583篇
  2022年   8篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   1篇
  2016年   8篇
  2015年   9篇
  2014年   16篇
  2013年   29篇
  2012年   20篇
  2011年   40篇
  2010年   22篇
  2009年   19篇
  2008年   43篇
  2007年   28篇
  2006年   39篇
  2005年   43篇
  2004年   39篇
  2003年   42篇
  2002年   47篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   11篇
  1994年   9篇
  1993年   5篇
  1992年   8篇
  1991年   7篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
排序方式: 共有583条查询结果,搜索用时 20 毫秒
71.
    
We have used computer simulations to investigate the structural nature of the molten globule (MG) state of canine milk lysozyme. To sample the conformational space efficiently, we performed replica-exchange umbrella sampling simulations with the radius of gyration as a reaction coordinate. We applied the Weighted Histogram Analysis Method to the trajectory of the simulations to obtain the potential of mean force, from which we identified representative structures corresponding to local minima in the free energy surface. The representative structures obtained in this way are in accord with the characteristics of the MG state reported previously by experimental studies. We conjecture that the MG state comprises a series of partially structured states undergoing relatively fast conformational interchange.  相似文献   
72.
73.
The mechanism by which YopP simultaneously inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB pathways has been elusive. Ectopic expression of YopP inhibits the activity and ubiquitination of a complex consisting of overexpressed TGF-beta-activated kinase 1 (TAK1) and its subunit TAK1-binding protein (TAB)1, but not of MEK kinase 1. YopP, but not the catalytically inactive mutant YopP(C172A), also suppresses basal and interleukin-1-inducible activation of endogenous TAK1, TAB1 and TAB2. YopP does not affect the interaction of TAK1, TAB1 and TAB2 but inhibits autophosphorylation of TAK1 at Thr 187 and phosphorylation of TAB1 at Ser 438. Glutathione S-transferase-tagged YopP (GST-YopP) binds to MAPK kinase (MAPKK)4 and TAB1 but not to TAK1 or TAB2 in vitro. Furthermore, YopP in synergy with a previously described negative regulatory feedback loop inhibits TAK1 by MAPKK6-p38-mediated TAB1 phosphorylation. Taken together, these data strongly suggest that YopP binds to TAB1 and directly inhibits TAK1 activity by affecting constitutive TAK1 and TAB1 ubiquitination that is required for autoactivation of TAK1.  相似文献   
74.
Myostatin, a member of the transforming growth factor (TGF)-β superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-β superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.  相似文献   
75.
Endoplasmic reticulum (ER) stress-responsive alkaline phosphatase (ES-TRAP) serves as a sensitive indicator for ER stress. In response to heavy metals including cadmium, nickel and cobalt, hepatocytes and renal tubular cells expressing ES-TRAP exhibited ER stress and decreased ES-TRAP activity. In ES-TRAP transgenic mice, acute exposure to cadmium showed rapid, transient decreases in the activity of serum ES-TRAP. It was inversely correlated with the induction of endogenous ER stress markers in the liver and kidney. Our result provides first evidence for the acute, reversible induction of ER stress in vivo after exposure to heavy metal.  相似文献   
76.
Obesity-related metabolic abnormalities, including chronic inflammation and oxidative stress, increase the risk of colorectal cancer. Dysregulation of the renin–angiotensin system (RAS) also plays a critical role in obesity-related metabolic disorders and in several types of carcinogenesis. In the present study, we examined the effects of an angiotensin-converting enzyme (ACE) inhibitor and angiotensin-II type 1 receptor blocker (ARB), both of which inhibit the RAS, on the development of azoxymethane (AOM)-initiated colonic premalignant lesions in C57BL/KsJ-db/db (db/db) obese mice. Male db/db mice were given 4 weekly subcutaneous injections of AOM (15 mg/kg body weight), and then, they received drinking water containing captopril (ACE inhibitor, 5 mg/kg/day) or telmisartan (ARB, 5 mg/kg/day) for 7 weeks. At sacrifice, administration of either captopril or telmisartan significantly reduced the total number of colonic premalignant lesions, i.e., aberrant crypt foci and β-catenin accumulated crypts, compared to that observed in the control group. The expression levels of TNF-α mRNA in the colonic mucosa of AOM-treated db/db mice were decreased by captopril and telmisartan. Captopril lowered the expression levels of TNF-α, IL-1β, IL-6, and PAI-1 mRNAs, while telmisartan lowered the expression levels of COX-2, IL-1β, IL-6, and PAI-1 mRNAs in the white adipose tissues of these mice. In addition, these agents significantly reduced the levels of urinary 8-OHdG, a surrogate marker of oxidative damage to DNA, in the experimental mice. These findings suggested that both ACE inhibitor and ARB suppress chemically-induced colon carcinogenesis by attenuating chronic inflammation and reducing oxidative stress in obese mice. Therefore, targeting dysregulation of the RAS might be an effective strategy for chemoprevention of colorectal carcinogenesis in obese individuals.  相似文献   
77.
MEC1 and TEL1 encode ATR- and ATM-related proteins in the budding yeast Saccharomyces cerevisiae, respectively. Phleomycin is an agent that catalyzes double-strand breaks in DNA. We show here that both Mec1 and Tel1 regulate the checkpoint response following phleomycin treatment. MEC1 is required for Rad53 phosphorylation and cell-cycle progression delay following phleomycin treatment in G1, S or G2/M phases. The tel1Δ mutation confers a defect in the checkpoint responses to phleomycin treatment in S phase. In addition, the tel1Δ mutation enhances the mec1 defect in activation of the phleomycin-induced checkpoint pathway in S phase. In contrast, the tel1Δ mutation confers only a minor defect in the checkpoint responses in G1 phase and no apparent defect in G2/M phase. Methyl methanesulfonate (MMS) treatment also activates checkpoints, inducing Rad53 phosphorylation in S phase. MMS-induced Rad53 phosphorylation is not detected in mec1Δ mutants during S phase, but occurs in tel1Δ mutants similar to wild-type cells. Finally, Xrs2 is phosphorylated after phleomycin treatment in a TEL1-dependent manner during S phase, whereas no significant Xrs2 phosphorylation is detected after MMS treatment. Together, our results support a model in which Tel1 contributes to checkpoint control in response to phleomycin-induced DNA damage in S phase.  相似文献   
78.
    
Kinetics of unfolding and refolding of a staphylococcal nuclease mutant, in which Pro117 is replaced by glycine, have been investigated by stopped-flow circular dichroism, and the results are compared with those for the wild-type protein. In contrast to the biphasic unfolding of the wild-type nuclease, the unfolding of the mutant is represented by a single-phase reaction, indicating that the biphasic unfolding for the wild-type protein is caused by cis-trans isomerization about the prolyl peptide bond in the native state. The proline mutation also simplifies the kinetic refolding. Importance of the results in elucidating the folding mechanism is discussed.  相似文献   
79.
Expression of nephrin, a crucial component of the glomerular slit diaphragm, is downregulated in patients with proteinuric glomerular diseases. Using conditionally immortalized reporter podocytes, we found that bystander macrophages as well as macrophage-derived cytokines IL-1beta and TNF-alpha markedly suppressed activity of the nephrin gene promoter in podocytes. The cytokine-initiated repression was reversible, observed on both basal and inducible expression, independent of Wilms' tumor suppressor WT1, and caused in part via activation of the phosphatidylinositol-3-kinase/Akt pathway. These results indicated a novel mechanism by which activated macrophages participate in the induction of proteinuria in glomerular diseases.  相似文献   
80.
    
It is difficult to determine the structural stability of the individual subunits or protomers of many proteins in the cell that exist in an oligomeric or complexed state. In this study, we used single‐molecule force spectroscopy on seven subunits of covalently linked cochaperonin GroES (ESC7) to evaluate the structural stability of the subunit. A modified form of ESC7 was immobilized on a mica surface. The force‐extension profile obtained from the mechanical unfolding of this ESC7 showed a distinctive sawtooth pattern that is typical for multimodular proteins. When analyzed according to the worm‐like chain model, the contour lengths calculated from the peaks in the profile suggested that linked‐GroES subunits unfold in distinct steps after the oligomeric ring structure of ESC7 is disrupted. The evidence that structured subunits of ESC7 withstand external force to some extent even after the perturbation of the oligomeric ring structure suggests that a stable monomeric intermediate is an important component of the equilibrium unfolding reaction of GroES.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号