首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   24篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   11篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   46篇
  2012年   24篇
  2011年   27篇
  2010年   15篇
  2009年   19篇
  2008年   32篇
  2007年   15篇
  2006年   8篇
  2005年   17篇
  2004年   16篇
  2003年   13篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有382条查询结果,搜索用时 343 毫秒
131.
The adaptor protein complex AP-1 mediates vesicular protein sorting between the trans Golgi network and endosomes. AP-1 recycles between membranes and the cytoplasm together with clathrin during transport vesicle formation and vesicle uncoating. AP-1 recycles independent of clathrin, indicating binding to unproductive membrane domains and premature termination of vesicle budding. Membrane recruitment requires ADP ribosylation factor-1-GTP, a transmembrane protein containing an AP-1-binding motif and phosphatidyl-inositol phosphate (PI-4-P). Little is known about the regulation of AP-1 membrane–cytoplasm recycling. We identified the N-terminal domain of μ1A-adaptin as being involved in the regulation of AP-1 membrane–cytoplasm recycling by constructing chimeras of μ1A and its homologue μ2. The AP-1* complex containing this μ2–μ1A chimera had slowed down recycling kinetics, resulting in missorting of mannose 6-phosphate receptors. The N-terminal domain is only accessible from the cytoplasmic AP-1 surface. None of the proteins known to influence AP-1 membrane recycling bound to this μ1A domain, indicating the regulation of AP-1 membrane–cytoplasm recycling by an yet unidentified cytoplasmic protein.  相似文献   
132.
Mechanistic aspects of oxidation of methane to methanol by methanotrophic bacteria via methane monooxygenase (MMO) is still not well understood. Elucidating how various molecules pertinent to methane oxidation interact with each other at the MMO active site offers critical insights on low-temperature activation of methane, which is one of the greatest technical challenges in hydrocarbon chemistry. In this review, most recent contributions to the area are analyzed comparing soluble (sMMO) and particulate (pMMO) forms. Initially, the taxonomical, morphological and physiological differences of different methanotrophs are discussed. Then, the structural and functional differences of sMMO and pMMO are analyzed while considering substrate/product-cofactor-active site interactions. A docking analysis was performed using Autodock Vina to uncover interactions between cofactors and corresponding enzymes. With natural gas becoming a significant contributor to the energy continuum, this literature analysis and molecular simulations conducted brings new insights to low-temperature activation of methane.  相似文献   
133.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   
134.
3‐Hydroxypropionic acid (3‐HP) is a commercially valuable chemical with the potential to be a key building block for deriving many industrially important chemicals. However, its biological production has not been well documented. Our previous study demonstrated the feasibility of producing 3‐HP from glycerol using the recombinant Escherichia coli SH254 expressing glycerol dehydratase (DhaB) and aldehyde dehydrogenase (AldH), and reported that an “imbalance between the two enzymes” and the “instability of the first enzyme DhaB” were the major factors limiting 3‐HP production. In this study, the efficiency of the recombinant strain(s) was improved by expressing DhaB and AldH in two compatible isopropyl‐thio‐β‐galactoside (IPTG) inducible plasmids along with glycerol dehydratase reactivase (GDR). The expression levels of the two proteins were measured. It was found that the changes in protein expression were associated with their enzymatic activity and balance. While cloning an alternate aldehyde dehydrogenase (ALDH), α‐ketoglutaric semialdehyde dehydrogenase (KGSADH), instead of AldH, the recombinant E. coli SH‐BGK1 showed the highest level of 3‐HP production (2.8 g/L) under shake‐flask conditions. When an aerobic fed‐batch process was carried out under bioreactor conditions at pH 7.0, the recombinant SH‐BGK1 produced 38.7 g 3‐HP/L with an average yield of 35%. This article reports the highest level of 3‐HP production from glycerol thus far. Biotechnol. Bioeng. 2009; 104: 729–739 © 2009 Wiley Periodicals, Inc.  相似文献   
135.
136.
137.
Gasification‐fermentation is an emerging technology for the conversion of lignocellulosic materials into biofuels and specialty chemicals. For effective utilization of producer gas by fermenting bacteria, tar compounds produced in the gasification process are often removed by wet scrubbing techniques using acetone. In a preliminary study using biomass generated producer gas scrubbed with acetone, an accumulation of acetone and subsequent isopropanol production was observed. The effect of 2 g/L acetone concentrations in the fermentation media on growth and product distributions was studied with “Clostridium ragsdalei,” also known as Clostridium strain P11 or P11, and Clostridium carboxidivorans P7 or P7. The reduction of acetone to isopropanol was possible with “C. ragsdalei,” but not with P7. In P11 this reaction occurred rapidly when acetone was added in the acidogenic phase, but was 2.5 times slower when added in the solventogenic phase. Acetone at concentrations of 2 g/L did not affect the growth of P7, but ethanol increased by 41% and acetic acid concentrations decreased by 79%. In the fermentations using P11, growth was unaffected and ethanol concentrations increased by 55% when acetone was added in the acidogenic phase. Acetic acid concentrations increased by 19% in both the treatments where acetone was added. Our observations indicate that P11 has a secondary alcohol dehydrogenase that enables it to reduce acetone to isopropanol, while P7 lacks this enzyme. P11 offers an opportunity for biological production of isopropanol from acetone reduction in the presence of gaseous substrates (CO, CO2, and H2). Biotechnol. Bioeng. 2011;108: 2330–2338. © 2011 Wiley Periodicals, Inc.  相似文献   
138.
139.
Escherichia coli ribonuclease III, purified to homogeneity from an overexpressing bacterial strain, exhibits a high catalytic efficiency and thermostable processing activity in vitro. The RNase III-catalyzed cleavage of a 47 nucleotide substrate (R1.1 RNA), based on the bacteriophage T7 R1.1 processing signal, follows substrate saturation kinetics, with a Km of 0.26 microM, and kcat of 7.7 min.-1 (37 degrees C, in buffer containing 250 mM potassium glutamate and 10 mM MgCl2). Mn2+ and Co2+ can support the enzymatic cleavage of the R1.1 RNA canonical site, and both metal ions exhibit concentration dependences similar to that of Mg2+. Mn2+ and Co2+ in addition promote enzymatic cleavage of a secondary site in R1.1 RNA, which is proposed to result from the altered hydrolytic activity of the metalloenzyme (RNase III 'star' activity), exhibiting a broadened cleavage specificity. Neither Ca2+ nor Zn2+ support RNase III processing, and Zn2+ moreover inhibits the Mg(2+)-dependent enzymatic reaction without blocking substrate binding. RNase III does not require monovalent salt for processing activity; however, the in vitro reactivity pattern is influenced by the monovalent salt concentration, as well as type of anion. First, R1.1 RNA secondary site cleavage increases as the salt concentration is lowered, perhaps reflecting enhanced enzyme binding to substrate. Second, the substitution of glutamate anion for chloride anion extends the salt concentration range within which efficient processing occurs. Third, fluoride anion inhibits RNase III-catalyzed cleavage, by a mechanism which does not involve inhibition of substrate binding.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号