首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1737篇
  免费   150篇
  国内免费   1篇
  1888篇
  2023年   5篇
  2022年   12篇
  2021年   23篇
  2020年   16篇
  2019年   28篇
  2018年   26篇
  2017年   28篇
  2016年   57篇
  2015年   80篇
  2014年   98篇
  2013年   114篇
  2012年   146篇
  2011年   151篇
  2010年   81篇
  2009年   73篇
  2008年   100篇
  2007年   95篇
  2006年   85篇
  2005年   118篇
  2004年   72篇
  2003年   115篇
  2002年   90篇
  2001年   25篇
  2000年   14篇
  1999年   23篇
  1998年   18篇
  1997年   21篇
  1996年   20篇
  1995年   17篇
  1994年   10篇
  1993年   15篇
  1992年   10篇
  1991年   6篇
  1990年   3篇
  1989年   10篇
  1988年   11篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1983年   4篇
  1982年   3篇
  1980年   3篇
  1977年   4篇
  1975年   4篇
  1973年   4篇
  1972年   5篇
  1971年   3篇
  1968年   4篇
  1965年   2篇
  1958年   2篇
排序方式: 共有1888条查询结果,搜索用时 15 毫秒
161.
A phenocopy is defined as an environmentally induced phenotype of one individual which is identical to the genotype-determined phenotype of another individual. The phenocopy phenomenon has been translated to the drug discovery process as phenotypes produced by the treatment of biological systems with new chemical entities (NCE) may resemble environmentally induced phenotypic modifications. Various new chemical entities exerting inhibition of the kinase activity of Transforming Growth Factor β Receptor I (TGF-βR1) were qualified by high-throughput RNA expression profiling. This chemical genomics approach resulted in a precise time-dependent insight to the TGF-β biology and allowed furthermore a comprehensive analysis of each NCE's off-target effects. The evaluation of off-target effects by the phenocopy approach allows a more accurate and integrated view on optimized compounds, supplementing classical biological evaluation parameters such as potency and selectivity. It has therefore the potential to become a novel method for ranking compounds during various drug discovery phases.  相似文献   
162.
The protein Ser/Thr kinase CK2 (former name: casein kinase II) exists predominantly as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) bound to a dimer of noncatalytic subunits (CK2β). We undertook a study to further understand how these subunits interact to form the tetramer. To this end, we used recombinant, C-terminal truncated forms of human CK2 subunits that are able to form the holoenzyme. We analyzed the interaction thermodynamics between the binding of CK2α and CK2β as well as the impact of changes in temperature, pH, and the ionization enthalpy of the buffer using isothermal titration calorimetry (ITC). With structure-guided alanine scanning mutagenesis we truncated individual side chains in the hydrophobic amino acid cluster located within the CK2α interface to identify experimentally the amino acids that dominate affinity. The ITC results indicate that Leu41 or Phe54 single mutations were most disruptive to binding of CK2β. Additionally, these CK2α mutants retained their kinase activity. Furthermore, the substitution of Leu41 in combination with Phe54 showed that the individual mutations were not additive, suggesting that the cooperative action of both residues played a role. Interestingly, the replacement of Ile69, which has a central position in the interaction surface of CK2α, only had modest effects. The differences between Leu41, Phe54, and Ile69 in interaction relevance correlate with solvent accessibility changes during the transition from unbound to CK2β-bound CK2α. Identifying residues on CK2α that play a key role in CK2α/CK2β interactions is important for the future generation of small molecule drug design.  相似文献   
163.
164.
165.
Drought events are predicted to increase due to climate change, yet consequences for plant–insect interactions are only partially understood. Drought‐mediated interactions between herbivores and their host plants are affected by a combination of factors, including characteristics of the affected plant, its associated herbivore and of the prevailing drought. Studying the effect of these factors in combination may provide important insight into plant and herbivore responses to drought. We studied drought effects on plant resistance to two leaf‐chewing herbivores by considering differing growth conditions, plant chemistry and insect responses in concert. We exposed Alliaria petiolata plants from several wild populations to different intensities of intermittent drought stress and quantified drought‐mediated changes in plant chemistry. Simultaneously, we assessed behavior (feeding preference) and performance of two lepidopteran herbivores: Pieris brassicae, a specialist, and Spodoptera littoralis, a generalist. Drought led to lowest concentrations of secondary defense compounds in severely stressed plants, without affecting total nitrogen content. Additionally, drought evoked opposite patterns in feeding preferences (plant palatability) between the herbivore species. Pieris brassicae consumed most of well‐watered plants, while S. littoralis preferred severely drought‐stressed plants. Hence, feeding preferences of S. littoralis reflected changes in plant secondary chemistry. Contrary to their feeding preference, P. brassicae performed better on drought‐stressed than on well‐watered plants, with faster development and higher attained pupal mass (plant suitability). Spodoptera littoralis showed retarded development in all treatments. In conclusion, drought caused plant secondary defense compounds to decrease consistently across all studied plant populations, which evoked contrasting feeding preferences of two herbivore species of the same feeding guild. These results suggest herbivore specificity as a possible explanation for herbivore responses to drought and emphasize the importance of herbivore characteristics such as feeding specialization in understanding and predicting consequences of future drought events.  相似文献   
166.
In this study we compared two routine PCR systems for the detection of Leptospira spp. and assessed their performance when directly applied to kidney samples from small mammals. Although the kappa value of 0.9 indicated a high level of agreement between the tests, the outer membrane lipoprotein gene lipl32 based PCR was more robust and showed a higher number of positive kidney samples.  相似文献   
167.
Eukaryotic protein kinases are fundamental factors for cellular regulation and therefore subject of strict control mechanisms. For full activity a kinase molecule must be penetrated by two stacks of hydrophobic residues, the regulatory and the catalytic spine that are normally well conserved among active protein kinases. We apply this novel spine concept here on CK2α, the catalytic subunit of protein kinase CK2. Homo sapiens disposes of two paralog isoforms of CK2α (hsCK2α and hsCK2α'). We describe two new structures of hsCK2α constructs one of which in complex with the ATP-analog adenylyl imidodiphosphate and the other with the ATP-competitive inhibitor 3-(4,5,6,7-tetrabromo-1H-benzotriazol-1-yl)propan-1-ol. The former is the first hsCK2α structure with a well defined cosubstrate/magnesium complex and the second with an open β4/β5-loop. Comparisons of these structures with existing CK2α/CK2α' and cAMP-dependent protein kinase (PKA) structures reveal: in hsCK2α' an open conformation of the interdomain hinge/helix αD region that is critical for ATP-binding is found corresponding to an incomplete catalytic spine. In contrast hsCK2α often adopts the canonical, PKA-like version of the catalytic spine which correlates with a closed conformation of the hinge region. HsCK2α can switch to the incomplete, non-canonical, hsCK2α'-like state of the catalytic spine, but this transition apparently depends on binding of either ATP or of the regulatory subunit CK2β. Thus, ATP looks like an activator of hsCK2α rather than a pure cosubstrate.  相似文献   
168.
Glucocorticoids (GCs) are widely used to treat acute relapses of multiple sclerosis (MS). In this study, we demonstrate that liposomal encapsulation augments the therapeutic potency of GCs as they ameliorate experimental autoimmune encephalomyelitis (EAE) to the same extent as free GC, but at strongly reduced dosage and application frequency. Importantly, this is accompanied by an altered mode of action. Unlike free GCs, which mainly target T lymphocytes during EAE therapy, liposomal GCs only marginally affect T cell apoptosis and function. In contrast, liposomal GCs efficiently repress proinflammatory macrophage functions and upregulate anti-inflammatory genes associated with the alternatively activated M2 phenotype. The GC receptor (GR) per se is indispensable for the therapeutic efficacy of liposomal GC. In contrast to free GCs, however, the individual deletion of the GR either in T cells or myeloid cells has little effect on the efficacy of liposomal GCs in the treatment of EAE. Only the combined deletion of the GR in both cellular compartments markedly compromises the therapeutic effect of liposomal GCs on disease progression. In conclusion, encapsulation of GC does not only enhance their efficacy in the treatment of EAE but also alters their target cell specificity and their mode of action compared with free GCs.  相似文献   
169.
NK cell activation is regulated by a balance between activating and inhibitory signals. To address the question of how these signals are spatially integrated, we created a computer simulation of activating and inhibitory NK cell immunological synapse (NKIS) assembly, implementing either a "quantity-based" inhibition model or a "distance-based" inhibition model. The simulations mimicked the observed molecule distributions in inhibitory and activating NKIS and yielded several new insights. First, the total signal is highly influenced by activating complex dissociation rates but not by adhesion and inhibitory complex dissociation rates. Second, concerted motion of receptors in clusters significantly accelerates NKIS maturation. Third, when the potential of a cis interaction between Ly49 receptors and MHC class I on murine NK cells was added to the model, the integrated signal as a function of receptor and ligand numbers was only slightly increased, at least up to the level of 50% cis-bound Ly49 receptors reached in the model. Fourth, and perhaps most importantly, the integrated signal behavior obtained when using the distance-based inhibition signal model was closer to the experimentally observed behavior, with an inhibition radius of the order 3-10 molecules. Microscopy to visualize Vav activation in NK cells on micropatterned surfaces of activating and inhibitory strips revealed that Vav is only locally activated where activating receptors are ligated within a single NK cell contact. Taken together, these data are consistent with a model in which inhibitory receptors act locally; that is, that every bound inhibitory receptor acts on activating receptors within a certain radius around it.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号