首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1873篇
  免费   161篇
  国内免费   3篇
  2023年   5篇
  2022年   13篇
  2021年   25篇
  2020年   16篇
  2019年   30篇
  2018年   25篇
  2017年   27篇
  2016年   56篇
  2015年   87篇
  2014年   103篇
  2013年   118篇
  2012年   148篇
  2011年   155篇
  2010年   87篇
  2009年   76篇
  2008年   107篇
  2007年   106篇
  2006年   88篇
  2005年   127篇
  2004年   83篇
  2003年   118篇
  2002年   96篇
  2001年   31篇
  2000年   16篇
  1999年   29篇
  1998年   18篇
  1997年   24篇
  1996年   22篇
  1995年   17篇
  1994年   10篇
  1993年   14篇
  1992年   14篇
  1991年   7篇
  1990年   7篇
  1989年   15篇
  1988年   12篇
  1987年   5篇
  1986年   10篇
  1985年   4篇
  1983年   5篇
  1982年   6篇
  1981年   8篇
  1980年   4篇
  1979年   7篇
  1977年   7篇
  1976年   4篇
  1975年   9篇
  1974年   8篇
  1973年   8篇
  1971年   3篇
排序方式: 共有2037条查询结果,搜索用时 31 毫秒
101.
102.
To find a protein kinase C (PKC)-independent preconditioning mechanism, hypoxic preconditioning (HP; i.e., 10-min anoxia and 10-min reoxygenation) was applied to isolated rat hearts before 60-min global ischemia. HP led to improved recovery of developed pressure and reduced end-diastolic pressure in the left ventricle during reperfusion. Protection was unaffected by the PKC inhibitor bisindolylmaleimide (BIM; 1 micromol/l). It was abolished by the inhibitor of protein phosphatases 1 and 2A cantharidin (20 or 5 micromol/l) and partially enhanced by the inhibitor of protein phosphatase 2A okadaic acid (5 nmol/l). In adult rat cardiomyocytes treated with BIM and exposed to 60-min simulated ischemia (anoxia, extracellular pH 6.4), HP led to attenuation of anoxic Na(+)/Ca(2+) overload and of hypercontracture, which developed on reoxygenation. This protection was prevented by treatment with cantharidin but not with okadaic acid. In conclusion, HP exerts PKC-independent protection on ischemic-reperfused rat hearts and cardiomyocytes. Protein phosphatase 1 seems a mediator of this protective mechanism.  相似文献   
103.
A novel esterase catalyzing regioselective hydrolysis was purified from the membrane fraction of Microbacterium sp. 7-1W, and characterized. The enzyme was solubilized with Brij 58 and purified 13.8-fold to apparent homogeneity with 2.58% overall recovery. The relative molecular mass of the native enzyme as estimated by gel filtration was more than 600,000 Da, and the subunit molecular mass was 62,000 Da. The enzyme catalyzed cleavage of the terminal ester bonds of cetraxate esters and pantothenate esters. The K(m) and V(max) values for methyl cetraxate were 0.380 mM and 7.76 micromole min(-1) mg(-1) protein, respectively. The enzyme was inhibited by serine hydrolase inhibitors.  相似文献   
104.
The synthesis of water-borne polyurethane coatings in the presence of diisopropylfluorophosphatase (DFPase, E.C. 3.8.2.1) enabled the irreversible attachment of the enzyme to the polymeric matrix. The distribution of immobilized DFPase as well as activity retention are homogeneous within the coating. The resulting enzyme-containing coating (ECC) film hydrolyzes diisopropylfluorophosphate (DFP) in buffered media at high rates, retaining approximately 39% intrinsic activity. Decreasing ECC hydrophilicity, via the use of a less hydrophilic polyisocyanate during polymerization, significantly enhanced the intrinsic activity of the ECC. DFPase-ECC has biphasic deactivation kinetics, where the initial rapid deactivation of DFPase-ECC leads to the formation of a hyperstable and active form of enzyme.  相似文献   
105.
ATP hydrolysis by the isolated F(1)-ATPase drives the rotation of the central shaft, subunit gamma, which is located within a hexagon formed by subunits (alphabeta)(3). The C-terminal end of gamma forms an alpha-helix which properly fits into the "hydrophobic bearing" provided by loops of subunits alpha and beta. This "bearing" is expected to be essential for the rotary function. We checked the importance of this contact region by successive C-terminal deletions of 3, 6, 9, 12, 15, and 18 amino acid residues (Escherichia coli F(1)-ATPase). The ATP hydrolysis activity of a load-free ensemble of F(1) with 12 residues deleted decreased to 24% of the control. EF(1) with deletions of 15 or 18 residues was inactive, probably because it failed to assemble. The average torque generated by a single molecule of EF(1) when loaded by a fluorescent actin filament was, however, unaffected by deletions of up to 12 residues, as was their rotational behavior (all samples rotated during 60 +/- 19% of the observation time). Activation energy analysis with the ensemble revealed a moderate decrease from 54 kJ/mol for EF(1) (full-length gamma) to 34 kJ/mol for EF(1)(gamma-12). These observations imply that the intactness of the C terminus of subunit gamma provides structural stability and/or routing during assembly of the enzyme, but that it is not required for the rotary action under load, proper.  相似文献   
106.
We consider array experiments that compare expression levels of a high number of genes in two cell lines with few repetitions and with no subject effect. We develop a statistical model that illustrates under which assumptions thresholding is optimal in the analysis of such microarray data. The results of our model explain the success of the empirical rule of two-fold change. We illustrate a thresholding procedure that is adaptive to the noise level of the experiment, the amount of genes analyzed, and the amount of genes that truly change expression level. This procedure, in a world of perfect knowledge on noise distribution, would allow reconstruction of a sparse signal, minimizing the false discovery rate. Given the amount of information actually available, the thresholding rule described provides a reasonable estimator for the change in expression of any gene in two compared cell lines.  相似文献   
107.
Plastids are the site of the reductive and the oxidative pentose phosphate pathways, which both generate pentose phosphates as intermediates. A plastidic transporter from Arabidopsis has been identified that is able to transport, in exchange with inorganic phosphate or triose phosphates, xylulose 5-phosphate (Xul-5-P) and, to a lesser extent, also ribulose 5-phosphate, but does not accept ribose 5-phosphate or hexose phosphates as substrates. Under physiological conditions, Xul-5-P would be the preferred substrate. Therefore, the translocator was named Xul-5-P/phosphate translocator (XPT). The XPT shares only approximately 35% to 40% sequence identity with members of both the triose phosphate translocator and the phosphoenolpyruvate/phosphate translocator classes, but a higher identity of approximately 50% to glucose 6-phosphate/phosphate translocators. Therefore, it represents a fourth group of plastidic phosphate translocators. Database analysis revealed that plant cells contain, in addition to enzymes of the oxidative branch of the oxidative pentose phosphate pathway, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase in both the cytosol and the plastids, whereas the transketolase and transaldolase converting the produced pentose phosphates to triose phosphates and hexose phosphates are probably solely confined to plastids. It is assumed that the XPT function is to provide the plastidic pentose phosphate pathways with cytosolic carbon skeletons in the form of Xul-5-P, especially under conditions of a high demand for intermediates of the cycles.  相似文献   
108.
109.
Innate and acquired immunity in atherogenesis   总被引:33,自引:0,他引:33  
  相似文献   
110.
Previous studies using pancreas from various mammals and freshly isolated islets from rat pancreas have provided evidence supporting possible involvement of the glycosphingolipid sulfatide in insulin processing and secretion. In this study, sulfatide expression and metabolism in the beta cell line RINr1046-38 (RIN-38), commonly used as a model for beta cell functional studies, were investigated and compared with previous findings from freshly isolated islets. RIN-38 cells expressed similar amounts (2.7 +/- 1.1 nmol/mg protein, n = 19) of sulfatide as isolated rat islets and also followed the same metabolic pathway, mainly through recycling. Moreover, in agreement with findings in isolated islets, the major species of sulfatide isolated from RIN-38 cells contained C16:0 and C24:0 fatty acids. By applying subcellular isolations and electron microscopy and immunocytochemistry techniques, sulfatide was shown to be located to the secretory granules, the plasma membrane and enriched in detergent insoluble microdomains. In the electron microscopy studies, Sulph I staining was also associated with mitochondria and villi structures. In conclusion, RIN-38 cells might be an appropriate model, as a complement to isolated islets where the amount of material often limits the experiments, to further explore the role of sulfatide in insulin secretion and signal transduction of beta cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号