首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   150篇
  国内免费   1篇
  1973篇
  2023年   5篇
  2022年   13篇
  2021年   25篇
  2020年   16篇
  2019年   31篇
  2018年   27篇
  2017年   28篇
  2016年   55篇
  2015年   83篇
  2014年   99篇
  2013年   119篇
  2012年   152篇
  2011年   156篇
  2010年   87篇
  2009年   76篇
  2008年   106篇
  2007年   98篇
  2006年   86篇
  2005年   125篇
  2004年   74篇
  2003年   121篇
  2002年   94篇
  2001年   25篇
  2000年   15篇
  1999年   22篇
  1998年   18篇
  1997年   23篇
  1996年   19篇
  1995年   18篇
  1994年   11篇
  1993年   13篇
  1992年   9篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   9篇
  1987年   3篇
  1986年   10篇
  1985年   12篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1975年   5篇
  1973年   8篇
  1972年   3篇
排序方式: 共有1973条查询结果,搜索用时 14 毫秒
961.
Cell volume regulation and swelling-activated chloride channels   总被引:9,自引:0,他引:9  
Maintenance of a constant volume is essential for normal cell function. Following cell swelling, as a consequence of reduction of extracellular osmolarity or increase of intracellular content of osmolytes, animal cells are able to restore their original volume by activation of potassium and chloride conductances. The loss of these ions, followed passively by water, is responsible for the homeostatic response called regulatory volume decrease (RVD). Activation of a chloride conductance upon cell swelling is a key step in RVD. Several proteins have been proposed as candidates for this chloride conductance. The status of the field is reviewed, with particular emphasis on ClC-3, a member of the ClC family which has been recently proposed as the chloride channel involved in cell volume regulation.  相似文献   
962.
963.
Karsten WE  Pais JE  Rao GS  Harris BG  Cook PF 《Biochemistry》2003,42(32):9712-9721
The kinetic mechanism of activation of the mitochondrial NAD-malic enzyme from the parasitic roundworm Ascaris suum has been studied using a steady-state kinetic approach. The following conclusions are suggested. First, malate and fumarate increase the activity of the enzyme in both reaction directions as a result of binding to separate allosteric sites, i.e., sites that exist in addition to the active site. The binding of malate and fumarate is synergistic with the K(act) decreasing by >or=10-fold at saturating concentrations of the other activator. Second, the presence of the activators decreases the K(m) for pyruvate 3-4-fold, and the K(i) (Mn) >or=20-fold in the direction of reductive carboxylation; similar effects are obtained with fumarate in the direction of oxidative decarboxylation. The greatest effect of the activators is thus expressed at low reactant concentrations, i.e., physiologic concentrations of reactant, where activation of >or=15-fold is observed. A recent crystallographic structure of the human mitochondrial NAD malic enzyme [13] shows fumarate bound to an allosteric site. Site-directed mutagenesis was used to change R105, homologous to R91 in the fumarate activator site of the human enzyme, to alanine. The R105A mutant enzyme exhibits the same maximum rate and V/K(NAD) as does the wild-type enzyme, but 7-8-fold decrease in both V/K(malate) and V/K(Mg), indicating the importance of this residue in the activator site. In addition, neither fumarate nor malate activates the enzyme in either reaction direction. Finally, a change in K143 (a residue in a positive pocket adjacent to that which contains R105), to alanine results in an increase in the K(act) for malate by about an order of magnitude such that it is now of the same magnitude as the K(m) for malate. The K143A mutant enzyme also exhibits an increase in the K(act) for fumarate (in the absence of malate) from 200 microM to about 25 mM.  相似文献   
964.
Lnk is an adaptor protein expressed primarily in lymphocytes and hemopoietic precursor cells. Marked expansion of B lineage cells occurs in lnk(-/-) mice, indicating that Lnk regulates B cell production by negatively controlling pro-B cell expansion. In addition, lnk(-/-) hemopoietic precursors have an advantage in repopulating the hemopoietic system of irradiated host animals. In this study, we show that Lnk overexpression results in impaired expansion of lymphoid precursor cells and altered mature B cell subpopulations. The representation of both B lineage and T lineage cells was reduced in transgenic mice overexpressing Lnk under the control of a lymphocyte-specific expression vector. Whereas the overall number of B and T cells was correlated with Lnk protein expression levels, marginal zone B cells in spleen and B1 cells in the peritoneal cavity were relatively resistant to Lnk overexpression. The C-terminal tyrosine residue, conserved among Lnk family adaptor proteins, was dispensable for the negative regulatory roles of Lnk in lymphocyte development. Our results illuminate the novel negative regulatory mechanism mediated by the Lnk adaptor protein in controlling lymphocyte production and function.  相似文献   
965.
In L2 mice, a high expression level of the transgenic lambda2(315) L chain results in nearly complete exclusion of endogenous L chains and a predominance of B-1a cells. In this study, we show that splenic and peritoneal B-1a cells differ considerably in their Ab repertoire and gene expression profile. Splenic B-1a cells exhibit a more diversified repertoire under L chain limitation. Despite oligoclonal overlaps between both B-1a compartments, some B cell receptor specificities are clearly restricted to the peritoneum. The capacity of peritoneal B-1a cells to enter the splenic B-1a compartment was found to be very limited. Gene expression profiling revealed genes up-regulated in splenic B-1a cells that are involved in mediating specialized first-line-of-defense effector functions and interaction with T cells. Thus, splenic and peritoneal B-1a cells differ not only in their developmental program but also in functional properties.  相似文献   
966.
Transgenic (Tg) L2 mice expressing high levels of the lambda2 (315) L chain contain only B cell populations involved in the first line of defense, i.e., B-1 and marginal zone (MZ) B cells. The strongly oligoclonal IgH chain repertoire of Tg B-1a cells in such mice was attributed to strong positive selection by autoantigens. In this study, we show that the MZ B cells of L2 mice correspond very closely to MZ B cells of normal mice, as revealed by surface marker expression and gene expression profiling. We demonstrate that the IgH chain repertoire of these Tg MZ B cells is extremely heterogeneous. This is in sharp contrast to the oligoclonality found in B-1a cells of the same mice, which was attributed to strong positive selection mediated by autoantigens. Therefore, the strong positive selection of the IgH chain repertoire in L2 mice is B-1a specific. Thus, our data demonstrate that despite common functional properties, MZ B and B-1a cells exhibit striking differences in their selection and/or maintenance requirements.  相似文献   
967.
Creatinine amidohydrolase (creatininase; EC 3.5.2.10) from Pseudomonas putida, a homohexameric enzyme with a molecular mass of 28.4 kDa per subunit, is a cyclic amidohydrolase catalysing the reversible conversion of creatinine to creatine. The enzyme plays a key role in the bacterial degradation of creatinine. The three-dimensional structure of creatininase from P.putida was determined and refined to 2.1A. The structure shows the six subunits arranged as a trimer of dimers and definitely disproves previous reports that the enzyme has an octameric quaternary structure. Each monomer consists of a central, four-stranded, parallel beta-sheet flanked by two alpha-helices on both sides of the beta-sheet. This topology is unique within the superfamily of amidohydrolases. Moreover, creatininase possesses a novel fold with no close structural relatives within the Protein Data Bank. Each creatininase monomer contains a binuclear zinc centre near the C termini of the beta-strands and the N termini of the main alpha-helices. These zinc ions indicate the location of the active site unambiguously. The active site is entirely buried and is not accessible from the solution without movement of parts of the protein. The two zinc ions are bridged by a water molecule and by an aspartate residue, which acts as a bidentate ligand. They differ from each other in the number and the spatial arrangement of their ligands. One of them is tetrahedrally and the other trigonal-bipyramidally ligated. Using two water molecules of the first coordination sphere as anchor points, a creatinine-water adduct resembling the transition state of the hydrolysation reaction was modelled into the active site. The resulting complex in combination with structural comparisons with other amidohydrolases enabled us to identify the most probable candidate for the catalytic base and to suggest a putative reaction mechanism. Surprisingly these structural comparisons revealed a similarity in the active-site arrangement between creatininase and the hydantoinase-like cyclic amidohydrolases that was unexpected, given the completely unrelated primary and tertiary structures. In particular, the zinc-bridging aspartate residue of creatininase is a spatially and functionally analogue to a carboxylated lysine residue found in dihydroorotase and the hydantoinases. Hence, creatininase and the hydantoinase-like cyclic amidohydrolases represent a further example of convergent evolution within the enzyme class of hydrolases.  相似文献   
968.
A novel method for the isolation of protein sequence tags to identify proteins in a complex mixture of hydrophobic proteins is described. The PST (Protein Sequence Tag) technology deals with the isolation and MS/MS based identification of one N-terminal peptide from each polypeptide fragment generated by cyanogen bromide cleavage of a mixture of proteins. PST sampling takes place after sub-cellular fractionation of a complex protein mixture to give enrichment of mitochondrial proteins. The method presented here combines effective sample preparation with a novel peptide isolation protocol involving chemical and enzymatic cleavage of proteins coupled to chemical labeling and selective capture procedures. The overall process has been very successful for the analysis of complex mixtures of hydrophobic proteins, particularly membrane proteins. This method substantially reduces the complexity of a protein digest by "sampling" the peptides present in the digest. The sampled digest is amenable to analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Methods of "sampling" protein digests have great value' if they can provide sufficient information to identify substantially all of the proteins in the sample while reducing the complexity of the sample to maximize the efficient usage of LC-MS/MS capacity. The validity of the process is demonstrated for mitochondrial samples from S. cerevisiae. The proteins identified by the PST technology are compared to the proteins identified by the conventional technology 2-D gel electrophoresis as a control.  相似文献   
969.
Objective: An increasing body of evidence is emerging linking adipogenesis and inflammation. Obesity, alone or as a part of the metabolic syndrome, is characterized by a state of chronic low‐level inflammation as revealed by raised plasma levels of inflammatory cytokines and acute‐phase proteins. If inflammation can, in turn, increase adipose tissue growth, this may be the basis for a positive feedback loop in obesity. We have developed a tissue engineering model for growing adipose tissue in the mouse that allows quantification of increases in adipogenesis. In this study, we evaluated the adipogenic potential of the inflammogens monocyte chemoattractant protein (MCP)‐1 and zymosan‐A (Zy) in a murine tissue engineering model. Research Methods and Procedures: MCP‐1 and Zy were added to chambers filled with Matrigel and fibroblast growth factor 2. To analyze the role of inducible nitric oxide synthase (iNOS), the iNOS inhibitor aminoguanidine was added to the chamber. Results: Our results show that MCP‐1 generated proportionally large quantities of new adipose tissue. This neoadipogenesis was accompanied by an ingrowth of macrophages and could be mimicked by Zy. Aminoguanidine significantly inhibited the formation of adipose tissue. Discussion: Our findings demonstrate that low‐grade inflammation and iNOS expression are important factors in adipogenesis. Because fat neoformation in obesity and the metabolic syndrome is believed to be mediated by macrophage‐derived proinflammatory cytokines, this adipose tissue engineering system provides a model that could potentially be used to further unravel the pathogenesis of these two metabolic disorders.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号