首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   18篇
  2022年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   8篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1977年   2篇
  1973年   2篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
81.
Neural retinas of 6-day-old chick embryos synthesize DNA and are able to carry out DNA excision repair. However, in contrast to the situation in human cells, the maximum rate of repair induced by N-acetoxy acetylaminofluorene (AAAF) is no greater than that induced by methyl methanesulfonate (MMS). With advancing differentiation of the retina in the embryo, cell multiplication and DNA synthesis decline and cease, and concurrently the cells lose the ability to carry out DNA excision repair. Thus, in 15-16-day embryos, in which the level of DNA synthesis is very low, DNA repair is barely detectable. If retinas from 14-day embryos are dissociated with trypsin and the cell suspension is plated in growth- promoting medium, DNA synthesis is reinitiated; however, in these cultures there is no detectable repair of MMS-induced damage, and only low levels of repair are observed after treatment with AAAF. A cell line was produced, by repeated passaging of these cultures, in which the cell population reached a steady state of DNA replication. However, the cell population remained deficient in the ability to repair MMS-induced damage. This cell line most likely predominantly comprises cells of retino-glial origin. Possible correlations between deficiency in DNA repair mechanisms in replicating cells and carcinogenesis in neural tissues are discussed.  相似文献   
82.
The amyloid precursor protein (APP) is proteolytically processed predominantly by alpha-secretase to release the ectodomain (sAPPalpha). In this study, we have addressed the cellular location of the constitutive alpha-secretase cleavage of endogenous APP in a neuronal cell line. Incubation of the neuroblastoma cell line IMR32 at 20 degrees C prevented the secretion into the medium of soluble wild-type APP cleaved by alpha-secretase as revealed by both immunoelectrophoretic blot analysis with a site-specific antibody and immunoprecipitation following metabolic labeling of the cells. No sAPPalpha was detected in the cell lysates following incubation of the cells at 20 degrees C, indicating that alpha-secretase does not cleave APP in the secretory pathway prior to or within the trans-Golgi network. Parallel studies using an antibody that recognizes specifically the neoepitope revealed on soluble APP cleaved by beta-secretase indicated that this enzyme was acting intracellularly. alpha-Secretase is a zinc metalloproteinase susceptible to inhibition by hydroxamate-based compounds such as batimastat [Parvathy, S., et al. (1998) Biochemistry 37, 1680-1685]. Incubation of the cells with a cell-impermeant, biotinylated hydroxamate inhibitor inhibited the release of sAPPalpha by >92%, indicating that alpha-secretase is cleaving APP almost exclusively at the cell surface. The observation that alpha-secretase cleaves APP at the cell surface, while beta-secretase can act earlier in the secretory pathway within the neuronal cell line indicates that there must be strict control mechanisms in place to ensure that APP is normally cleaved primarily by alpha-secretase in the nonamyloidogenic pathway to produce the neuroprotective sAPPalpha.  相似文献   
83.
Non-homologous DNA end-joining (NHEJ) is a major pathway of double strand break (DSB) repair in human cells. Here we show that vanillin (3-methoxy-4-hydroxybenzaldehyde)—a naturally occurring food component and an acknowledged antimutagen, anticlastogen and anticarcinogen—is an inhibitor of NHEJ. Vanillin blocked DNA end-joining by human cell extracts by directly inhibiting the activity of DNA-PK, a crucial NHEJ component. Inhibition was selective and vanillin had no detectable effect on other steps of the NHEJ process, on an unrelated protein kinase or on DNA mismatch repair by cell extracts. Subtoxic concentrations of vanillin did not affect the ATM/ATR-dependent phosphorylation of Chk2 or the S-phase checkpoint response after ionising radiation. They significantly potentiated the cytotoxicity of cisplatin, but did not affect sensitivity to UVC. A limited screen of structurally related compounds identified two substituted vanillin derivatives that were 100- and 50-fold more potent than vanillin as DNA-PK inhibitors. These compounds also sensitised cells to cisplatin. The inhibition of NHEJ is consistent with the antimutagenic and other biological properties of vanillin, possibly altering the balance between DSB repair by NHEJ and homologous recombination.  相似文献   
84.
OBJECTIVE--To assess the effect of a programme of postoperative community surveillance on the rate of detection of wound complications after operation for inguinal hernia. DESIGN--Prospective audit of wound complications including complications recorded in case notes and those discovered by community surveillance. SETTING--Academic surgical unit of three consultant surgeons. PATIENTS--510 patients undergoing elective inguinal hernia repair between June 1985 and August 1989. RESULTS--The wound infection rate recorded in the hospital notes was 3% compared with 9% when additional information was obtained from community surveillance. Wound complications were detected in 143 (28%) patients by community surveillance compared with a complication rate of 7% in the case records for the same patients. CONCLUSIONS--Wound complications are common after clean surgery in patients discharged home early. Complication rates are a reflection not only of the standards of surgical practice but also the rigour with which they are sought. Before national comparative audit data are published the method of collection must be standardised. For short stay surgery this should include meaningful community surveillance.  相似文献   
85.
Optical tweezers (infrared laser-based optical traps) have emerged as a powerful tool in molecular and cell biology. However, their usefulness has been limited, particularly in vivo, by the potential for damage to specimens resulting from the trapping laser. Relatively little is known about the origin of this phenomenon. Here we employed a wavelength-tunable optical trap in which the microscope objective transmission was fully characterized throughout the near infrared, in conjunction with a sensitive, rotating bacterial cell assay. Single cells of Escherichia coli were tethered to a glass coverslip by means of a single flagellum: such cells rotate at rates proportional to their transmembrane proton potential (. J. Mol. Biol. 138:541-561). Monitoring the rotation rates of cells subjected to laser illumination permits a rapid and quantitative measure of their metabolic state. Employing this assay, we characterized photodamage throughout the near-infrared region favored for optical trapping (790-1064 nm). The action spectrum for photodamage exhibits minima at 830 and 970 nm, and maxima at 870 and 930 nm. Damage was reduced to background levels under anaerobic conditions, implicating oxygen in the photodamage pathway. The intensity dependence for photodamage was linear, supporting a single-photon process. These findings may help guide the selection of lasers and experimental protocols best suited for optical trapping work.  相似文献   
86.
Mismatch binding proteins and tolerance to alkylating agents in human cells   总被引:1,自引:0,他引:1  
The Mex- (Mer-) phenotype of human cells is characterised by a sensitivity to agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-methyl-N-nitrosourea (MNU). The hypersensitivity of Mex- cells is a consequence of their failure to express the DNA-repair enzyme m6-Gua-DNA methyltransferase. Resistance to MNNG and MNU may be acquired by Mex- cells either by reexpression of a methyltransferase function or by an ill-defined process of tolerance in which the cytotoxic potential of m6-Gua is circumvented without the altered base being removed from DNA. It has been suggested that tolerance might involve an altered mismatch correcting function. We have investigated proteins which recognise and bind specifically to DNA fragments containing single-base mismatches. Cell-free extracts of a Burkitt's lymphoma cell line (Raji) contain two such mismatch binding activities. Neither protein appears to have a high affinity for m6-Gua-containing base pairs. The data indicate that m6-Gua-containing base pairs might be poor substrates for mismatch repair processes in human cells.  相似文献   
87.
A series of peptidomimetic thiophenol derivatives has been prepared and evaluated in vitro as inhibitors of human fibroblast collagenase. Many of these compounds have IC50 values in the sub-micromolar range.  相似文献   
88.
Photochemotherapy-in which a photosensitizing drug is combined with ultraviolet or visible radiation-has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S(4)TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S(4)TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S(4)TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S(4)TdR in dilute solution, more complex lesions are formed when S(4)TdR-containing oligonucleotides are irradiated. One of these, a thietane/S(5)-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S(4)TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S(4)TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S(4)TdR/UVA indicating that these lesions contribute significantly to S(4)TdR/UVA cytotoxicity.  相似文献   
89.
β-Secretase (BACE1) is an attractive drug target for Alzheimer disease. However, the design of clinical useful inhibitors targeting its active site has been extremely challenging. To identify alternative drug targeting sites we have generated a panel of BACE1 monoclonal antibodies (mAbs) that interfere with BACE1 activity in various assays and determined their binding epitopes. mAb 1A11 inhibited BACE1 in vitro using a large APP sequence based substrate (IC(50) ~0.76 nm), in primary neurons (EC(50) ~1.8 nm), and in mouse brain after stereotactic injection. Paradoxically, mAb 1A11 increased BACE1 activity in vitro when a short synthetic peptide was used as substrate, indicating that mAb 1A11 does not occupy the active-site. Epitope mapping revealed that mAb 1A11 binds to adjacent loops D and F, which together with nearby helix A, distinguishes BACE1 from other aspartyl proteases. Interestingly, mutagenesis of loop F and helix A decreased or increased BACE1 activity, identifying them as enzymatic regulatory elements and as potential alternative sites for inhibitor design. In contrast, mAb 5G7 was a potent BACE1 inhibitor in cell-free enzymatic assays (IC(50) ~0.47 nm) but displayed no inhibitory effect in primary neurons. Its epitope, a surface helix 299-312, is inaccessible in membrane-anchored BACE1. Remarkably, mutagenesis of helix 299-312 strongly reduced BACE1 ectodomain shedding, suggesting that this helix plays a role in BACE1 cellular biology. In conclusion, this study generated highly selective and potent BACE1 inhibitory mAbs, which recognize unique structural and functional elements in BACE1, and uncovered interesting alternative sites on BACE1 that could become targets for drug development.  相似文献   
90.
Brem R  Daehn I  Karran P 《DNA Repair》2011,10(8):869-876
Patients taking the immunosuppressant and anticancer thiopurines 6-mercaptopurine, azathioprine or 6-thioguanine (6-TG), develop skin cancer at a very high frequency. Their DNA contains 6-TG which absorbs ultraviolet A (UVA) radiation, and their skin is UVA hypersensitive, consistent with the formation of DNA photodamage. Here we demonstrate that UVA irradiation of 6-TG-containing DNA causes DNA interstrand crosslinking. In synthetic duplex oligodeoxynucleotides, the interstrand crosslinks (ICLs) can form between closely opposed 6-TG bases and, in a less favoured reaction, between 6-TG and normal bases on the opposite strand. In vivo, UVA irradiation of cultured cells containing 6-TG-substituted DNA also causes ICL formation and induces the chromosome aberrations that are characteristically associated with this type of DNA lesion. 6-TG/UVA activates the Fanconi anemia (FA) pathway via monoubiquitination of the FANCD2 protein. Cells defective in the FA pathway or other factors involved in ICL processing, such as XPF and DNA Polζ, are all hypersensitive to killing by 6-TG/UVA-consistent with a significant contribution of photochemical ICLs to the cytotoxicity of this treatment. Our findings suggest that sunlight-exposed skin of thiopurine treated patients may experience chronic photochemical DNA damage that requires constant intervention of the FA pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号