首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   18篇
  2022年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   8篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1977年   2篇
  1973年   2篇
排序方式: 共有107条查询结果,搜索用时 218 毫秒
51.
Members of the PRDM protein family have been shown to play important roles during embryonic development. Previous in vitro and in situ analyses indicated a function of Prdm6 in cells of the vascular system. To reveal physiological functions of Prdm6, we generated conditional Prdm6-deficient mice. Complete deletion of Prdm6 results in embryonic lethality due to cardiovascular defects associated with aberrations in vascular patterning. However, smooth muscle cells could be regularly differentiated from Prdm6-deficient embryonic stem cells and vascular smooth muscle cells were present and proliferated normally in Prdm6-deficient embryos. Conditional deletion of Prdm6 in the smooth muscle cell lineage using a SM22-Cre driver line resulted in perinatal lethality due to hemorrhage in the lungs. We thus identified Prdm6 as a factor that is essential for the physiological control of cardiovascular development.  相似文献   
52.

Background

Novel tuberculosis (TB) vaccines recently tested in humans have been designed to boost immunity induced by the current vaccine, Mycobacterium bovis Bacille Calmette-Guérin (BCG). Because BCG vaccination is used extensively in infants, this population group is likely to be the first in which efficacy trials of new vaccines will be conducted. However, our understanding of the complexity of immunity to BCG in infants is inadequate, making interpretation of vaccine-induced immune responses difficult.

Methods

To better understand BCG-induced immunity, we performed gene expression profiling in five 10-week old infants routinely vaccinated with BCG at birth. RNA was extracted from 12 hour BCG-stimulated or purified protein derivative of tuberculin (PPD)-stimulated PBMC, isolated from neonatal blood collected 10 weeks after vaccination. RNA was hybridised to the Sentrix® HumanRef-8 Expression BeadChip (Illumina) to measure expression of >16,000 genes.

Results

We found that ex vivo stimulation of PBMC with PPD and BCG induced largely similar gene expression profiles, except that BCG induced greater macrophage activation. The peroxisome proliferator-activated receptor (PPAR) signaling pathway, including PPAR-γ, involved in activation of the alternative, anti-inflammatory macrophage response was down-regulated following stimulation with both antigens. In contrast, up-regulation of genes associated with the classic, pro-inflammatory macrophage response was noted. Further analysis revealed a decrease in the expression of cell adhesion molecules (CAMs), including integrin alpha M (ITGAM), which is known to be important for entry of mycobacteria into the macrophage. Interestingly, more leukocyte genes were down-regulated than up-regulated.

Conclusion

Our results suggest that a combination of suppressed and up-regulated genes may be key in determining development of protective immunity to TB induced by vaccination with BCG.  相似文献   
53.
Amyloid beta (Abeta) peptides are the major constituent of amyloid plaques, one of the hallmark pathologies of Alzheimer's disease. Accurate and precise quantitation of these peptides in biological fluids is a critical component of Alzheimer's disease research. The current most established assay for analysis of Abeta peptides in preclinical research is enzyme-linked immunosorbent assay (ELISA), which, although sensitive and of proven utility, is a multistep, labor-intensive assay that is difficult to automate completely. To overcome these limitations, the authors have developed and optimized simple, sensitive, homogeneous 384-well assays for Abeta1-42 and Abeta1-40 using AlphaScreen technology. The assays are capable of detecting Abeta peptides at concentrations <2 pg/mL and, using a final assay volume of 20 microL, routinely generate Z' values >0.85. The AlphaScreen format has the following key advantages: substantially less hands-on time to run, easier to automate, higher throughput, and less expensive to run than the traditional ELISA. The results presented here show that AlphaScreen technology permits robust, efficient, and cost-effective quantitation of Abeta peptides.  相似文献   
54.
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.  相似文献   
55.
4-Thio-5-bromo-2'-deoxyuridine (3a) is prepared from 5-bromo-2'-deoxyuridine (BrdU) and its key properties are explored. The thionucleoside (3a) can react readily with monobromobimane and produces high fluorescence. 3a has UV maximum absorption at 340 nm and can be incorporated into cellular DNA. The cells containing 3a become sensitive to UVA light, offering therapeutic potential for UVA-induced cell killing.  相似文献   
56.
57.
Human mismatch repair, drug-induced DNA damage, and secondary cancer   总被引:3,自引:0,他引:3  
Karran P  Offman J  Bignami M 《Biochimie》2003,85(11):1149-1160
DNA mismatch repair (MMR) is an important replication error avoidance mechanism that prevents mutation. The association of defective MMR with familial and sporadic gastrointestinal and endometrial cancer has been acknowledged for some years. More recently, it has become apparent that MMR defects are common in acute myeloid leukaemia/myelodysplastic syndrome (AML/MDS) that follows successful chemotherapy for a primary malignancy. Therapy-related haematological malignancies are often associated with treatment with alkylating agents. Their frequency is increasing and they now account for at least 10% of all AML cases. There is also evidence for an association between MMR deficient AML/MDS and immunosuppressive treatment with thiopurine drugs. Here we review how MMR interacts with alkylating agent and thiopurine-induced DNA damage and suggest possible ways in which MMR defects may arise in therapy-related AML/MDS.  相似文献   
58.
59.
A previously unrecognized mismatch repair activity is described. Extracts of immortalized MSH2-deficient mouse fibroblasts did not correct most single base mispairs. The same extracts carried out efficient repair of A/C mismatches. A/G mispairs were less efficiently corrected and there was no significant repair of A/A. MLH1-defective mouse extracts also repaired an A/C mispair. A/C correction by Msh2(-/-) mouse cell extracts was not affected by antibodies against the PMS2 protein, which inhibited long-patch mismatch repair. A/C repair activity is thus independent of MutSalpha, MutSbeta and MutLalpha. A/C mismatches were corrected 5-fold more efficiently by extracts of Msh2 knockout mouse cells than by comparable extracts prepared from hMSH2- or hMLH1-deficient human cells. MSH2-independent A/C correction by mouse cell extracts did not require a nick in the circular duplex DNA substrate. Repair involved replacement of the A and was associated with the resynthesis of a limited stretch of 相似文献   
60.
Peptide aldehyde inhibitors of the chymotrypsin-like activity of the proteasome (CLIP) such as N-acetyl-Leu-Leu-Nle-H (or ALLN) have been shown previously to inhibit the secretion of beta-amyloid peptide (A beta) from cells. To evaluate more fully the role of the proteasome in this process, we have tested the effects on A beta formation of a much wider range of peptide-based inhibitors of CLIP than published previously. The inhibitors tested included several peptide boronates, some of which proved to be the most potent peptide-based inhibitors of beta-amyloid production reported so far. We found that the ability of the peptide aldehyde and boronate inhibitors to suppress A beta formation from cells correlated extremely well with their potency as CLIP inhibitors. Thus, we conclude that the proteasome may be involved either directly or indirectly in A beta formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号