首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   10篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   10篇
  2012年   8篇
  2011年   9篇
  2010年   9篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   11篇
  2005年   11篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
11.
Whereas uncoupling protein 1 (UCP-1) is clearly involved in thermogenesis, the role of UCP-2 is less clear. Using hybridization, cloning techniques and cDNA array analysis to identify inducible neuroprotective genes, we found that neuronal survival correlates with increased expression of Ucp2. In mice overexpressing human UCP-2, brain damage was diminished after experimental stroke and traumatic brain injury, and neurological recovery was enhanced. In cultured cortical neurons, UCP-2 reduced cell death and inhibited caspase-3 activation induced by oxygen and glucose deprivation. Mild mitochondrial uncoupling by 2,4-dinitrophenol (DNP) reduced neuronal death, and UCP-2 activity was enhanced by palmitic acid in isolated mitochondria. Also in isolated mitochondria, UCP-2 shifted the release of reactive oxygen species from the mitochondrial matrix to the extramitochondrial space. We propose that UCP-2 is an inducible protein that is neuroprotective by activating cellular redox signaling or by inducing mild mitochondrial uncoupling that prevents the release of apoptogenic proteins.  相似文献   
12.
There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted −1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.  相似文献   
13.
Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics) exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics) and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the “steady-state slow inactivation curve”), was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i) by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii) by testing the same drugs in a fundamentally different model and iii) by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that conclusions based on voltage protocols that are used to detect slow-inactivated state preference are unreliable and should be re-evaluated.  相似文献   
14.
Desmoid tumours (also called deep or aggressive fibromatoses) are potentially life-threatening fibromatous lesions. Hereditary desmoid tumours arise in individuals affected by either familial adenomatous polyposis (FAP) or hereditary desmoid disease (HDD) carrying germline mutations in APC. Most sporadic desmoids carry somatic mutations in CTNNB1. Previous studies identified losses on 5q and 6q, and gains on 8q and 20q as recurrent genetic changes in desmoids. However, virtually all genetic changes were derived from sporadic tumours. To investigate the somatic alterations in FAP-associated desmoids and to compare them with changes occurring in sporadic tumours, we analysed 17 FAP-associated and 38 sporadic desmoids by array comparative genomic hybridisation and multiple ligation-dependent probe amplification. Overall, the desmoids displayed only a limited number of genetic changes, occurring in 44% of cases. Recurrent gains at 8q (7%) and 20q (5%) were almost exclusively found in sporadic tumours. Recurrent losses were observed for a 700 kb region at 5q22.2, comprising the APC gene (11%), a 2 Mb region at 6p21.2-p21.1 (15%), and a relatively large region at 6q15-q23.3 (20%). The FAP-associated desmoids displayed a significantly higher frequency of copy number abnormalities (59%) than the sporadic tumours (37%). As predicted by the APC germline mutations among these patients, a high percentage (29%) of FAP-associated desmoids showed loss of the APC region at 5q22.2, which was infrequently (3%) seen among sporadic tumours. Our data suggest that loss of region 6q15-q16.2 is an important event in FAP-associated as well as sporadic desmoids, most likely of relevance for desmoid tumour progression.  相似文献   
15.
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease.  相似文献   
16.
Brucella, an aerobic, nonsporeforming, nonmotile Gram-negative coccobacillus, is a NIH/CDC category B bioterror threat agent that causes incapacitating human illness. Medical defense against the bioterror threat posed by Brucella would be strengthened by development of a human vaccine and improved diagnostic tests. Central to advancement of these goals is discovery of bacterial constituents that are immunogenic or antigenic for humans. Outer membrane proteins (OMPs) are particularly attractive for this purpose. In this study, we cloned, expressed, and purified seven predicted OMPs of Brucella suis. The recombinant proteins were fused with 6-His and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based on their ORF sequences and directly cloned into an entry vector. The recombinant entry constructs were propagated in TOP 10 cells, recombined into a destination vector, pET-DEST42, then transformed into Escherichia coli BL21 cells for IPTG-induced protein expression. The expressed recombinant proteins were confirmed with Western blot analysis using anti-6-His antibody conjugated with alkaline phosphatase. These B. suis OMPs were captured and purified using a HisGrab plate. The purified recombinant proteins were examined for their binding activity with antiserum. Serum derived from a rabbit immunized intramuscularly with dialyzed cell lysate of Brucella rough mutant WRR51. The OMPs were screened using the rabbit antiserum and purified IgG. The results suggested that recombinant B. suis OMPs were successfully cloned, expressed and purified. Some of the expressed OMPs showed high binding activity with immunized rabbit antiserum.  相似文献   
17.
18.
19.
20.
Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator (CFTR) is mediated by a tyrosine-based internalization signal in the CFTR carboxyl-terminal tail 1424YDSI1427. In the present studies, two naturally occurring cystic fibrosis mutations in the amino terminus of CFTR, R31C, and R31L were examined. To determine the defect that these mutations cause, the Arg-31 mutants were expressed in COS-7 cells and their biogenesis and trafficking to the cell surface tested in metabolic pulse-chase and surface biotinylation assays, respectively. The results indicated that both Arg-31 mutants were processed to band C at approximately 50% the efficiency of the wild-type protein. However, once processed and delivered to the cell surface, their half-lives were the same as wild-type protein. Interestingly, indirect immunofluorescence and cell surface biotinylation indicated that the surface pool was much smaller than could be accounted for based on the biogenesis defect alone. Therefore, the Arg-31 mutants were tested in internalization assays and found to be internalized at 2x the rate of the wild-type protein. Patch clamp and 6-methoxy-N-(3-sulfopropyl)quinolinium analysis confirmed reduced amounts of functional Arg-31 channels at the cell surface. Together, the results suggest that both R31C and R31L mutations compromise biogenesis and enhance internalization of CFTR. These two additive effects contribute to the loss of surface expression and the associated defect in chloride conductance that is consistent with a disease phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号