首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   59篇
  875篇
  2023年   8篇
  2022年   23篇
  2021年   42篇
  2020年   23篇
  2019年   27篇
  2018年   43篇
  2017年   40篇
  2016年   33篇
  2015年   67篇
  2014年   72篇
  2013年   81篇
  2012年   75篇
  2011年   86篇
  2010年   52篇
  2009年   24篇
  2008年   34篇
  2007年   34篇
  2006年   36篇
  2005年   22篇
  2004年   17篇
  2003年   9篇
  2002年   12篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1964年   1篇
  1941年   1篇
  1939年   1篇
  1905年   1篇
排序方式: 共有875条查询结果,搜索用时 15 毫秒
31.
We report a 2.0 Å structure of the CAE31940 protein, a proteobacterial NMT1/THI5-like domain-containing protein. We also discuss the primary and tertiary structure similarity with its homologs. The highly conserved FGGXMP motif was identified in CAE31940, which corresponds to the GCCCX motif located in the vicinity of the active center characteristic for THi5-like proteins found in yeast. This suggests that the FGGXMP motif may be a unique hallmark of proteobacterial NMT1/THI5-like proteins.  相似文献   
32.
Formation of dinitrosyl iron complexes (DNICs) was observed in a wide spectrum of pathophysiological conditions associated with overproduction of NO. To gain insight into the possible genotoxic effects of DNIC, we examined the interaction of histidinyl dinitrosyl iron complexes (HIS-DNIC) with DNA by means of circular dichroism. Formation of DNIC was monitored by EPR and FT/IR spectroscopy. Vibrational bands for aquated HIS-DNIC are reported. Dichroism results indicate that HIS-DNIC changes the conformation of the DNA in a dose-dependent manner in 10 mM phosphate buffer (pH 6). Increase of the buffer pH or ionic strength decreased the effect. Comparison of HIS-DNIC DNA interaction with the effect of hydrated Fe2+ ion revealed many similarities. The importance of iron ions in HIS-DNIC induced genotoxicity is confirmed by plasmid nicking assay. Treatment of pUC19 plasmid with 1 μM HIS-DNIC did not affect the plasmid supercoiling. Higher concentrations of HIS-DNIC induced single strand breaks. The effect was completely abrogated by addition of deferoxamine, a specific strong iron chelator. Our data reveal that formation of HIS-DNIC does not prevent DNA from iron-induced damage and imply that there is no direct interrelationship between iron–NO coordination and their mutual toxicity modulation.  相似文献   
33.
The incidence of peanut allergy continues to rise in the United States and Europe. Whereas exposure to the major allergens Ara h 1, 2, 3, and 6 can cause fatal anaphylaxis, exposure to the minor allergens usually does not. Ara h 8 is a minor allergen. Importantly, it is the minor food allergens that are thought to be responsible for oral allergy syndrome (OAS), in which sensitization to airborne allergens causes a Type 2 allergic reaction to ingested foods. Furthermore, it is believed that similar protein structure rather than a similar linear sequence is the cause of OAS. Bet v 1 from birch pollen is a common sensitizing agent, and OAS results when patients consume certain fruits, vegetables, tree nuts, and peanuts. Here, we report the three-dimensional structure of Ara h 8, a Bet v 1 homolog. The overall fold is very similar to that of Bet v 1, Api g 1 (celery), Gly m 4 (soy), and Pru av 1 (cherry). Ara h 8 binds the isoflavones quercetin and apigenin as well as resveratrol avidly.  相似文献   
34.
35.
While suicidal behaviour has been implicated in a plethora of psychiatric disorders including depression, psychoses and substance abuse, its association with adult ADHD is largely under-researched. Given that emotional instability and the high prevalence of comorbid conditions such as mood disorders and alcohol/drug dependence are typical for ADHD, the question of suicide risk must not be neglected in this patient group. A review of the current literature focusing on this issue provides strong evidence that ADHD patients are at a significant risk for experiencing suicidal ideations and committing suicide. For daily clinical practice, it is therefore essential to incorporate this aspect into the diagnostic and therapeutic process and to take preventive measures.  相似文献   
36.
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.  相似文献   
37.
Soft sensors are powerful tools for bioprocess monitoring due to their ability to perform online, noninvasive measurement, and possibility of detection of multiple components in cultivation media, which in turn can provide tools for the quantification of more than one metabolite/substrate/product in real time. In this work, soft sensor based on excitation‐emission fluorescence is for the first time applied for the monitoring of biotransformation production of 2‐phenylethanol (2‐PE) by yeast strains. Main process parameters—such as optical density, glucose, and 2‐PE concentrations—were determined with high accuracy and precision by fluorescence fingerprinting coupled with partial least squares regression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:299–307, 2017  相似文献   
38.
39.
High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to ‘response to stress’ were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号