首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151篇
  免费   67篇
  2023年   9篇
  2022年   26篇
  2021年   45篇
  2020年   25篇
  2019年   27篇
  2018年   49篇
  2017年   43篇
  2016年   39篇
  2015年   81篇
  2014年   87篇
  2013年   101篇
  2012年   96篇
  2011年   113篇
  2010年   64篇
  2009年   31篇
  2008年   57篇
  2007年   58篇
  2006年   53篇
  2005年   42篇
  2004年   30篇
  2003年   23篇
  2002年   28篇
  2001年   6篇
  2000年   8篇
  1999年   8篇
  1998年   6篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1985年   2篇
  1984年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1976年   2篇
  1972年   2篇
  1970年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1964年   1篇
  1941年   1篇
  1939年   1篇
  1905年   1篇
排序方式: 共有1218条查询结果,搜索用时 858 毫秒
81.
We investigated the role of Na(+)-K(+)-Cl(-) co-transporter isoform 1 (NKCC1) and reversal of Na(+)/Ca(2+) exchanger (NCX(rev)) in glutamate-mediated excitotoxicity in oligodendrocytes obtained from rat spinal cords (postnatal day 6-8). An immunocytochemical characterization showed that these cultures express NKCC1 and Na(+)/Ca(2+) exchanger isoforms 1, 2, and 3 (NCX1, NCX2, NCX3). Exposing the cultures to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) plus cyclothiazide (CTZ) led to a transient rise in intracellular (), which was followed by a sustained overload, NKCC1 phosphorylation, and a NKCC1-mediated Na(+) influx. In the presence of a specific AMPA receptor inhibitor 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), the AMPA/CTZ failed to elicit any changes in . The AMPA/CTZ-induced sustained rise led to mitochondrial Ca(2+) accumulation, release of cytochrome c from mitochondria, and cell death. The AMPA/CTZ-elicited increase, mitochondrial damage, and cell death were significantly reduced by inhibiting NKCC1 or NCX(rev). These data suggest that in cultured oligodendrocytes, activation of AMPA receptors leads to NKCC1 phosphorylation that enhances NKCC1-mediated Na(+) influx. The latter triggers NCX(rev) and NCX(rev)-mediated overload and compromises mitochondrial function and cellular viability.  相似文献   
82.
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms.  相似文献   
83.
Esophageal carcinomas have been shown to express Fas ligand (FasL) and down-regulate Fas to escape from host immune surveillance. Circulating soluble FasL (sFasL) has been suggested to provide protection from Fas-mediated apoptosis. The aim of this study was to assess serum sFasL levels in esophageal cancer. The pretreatment levels of sFasL in the serum of 100 patients with esophageal squamous cell cancer and 41 healthy volunteers were determined by ELISA. Probability of survival was calculated according to the method of Kaplan-Meier. The prognostic influence of high and low level of sFasL was analyzed with the log-rank test. The mean serum level of sFasL in patients with esophageal cancer was significantly higher than that in healthy donors (1.567+/-1.786 vs 0.261+/-0.435, p<0.0001). The levels of serum sFasL were significantly higher in advanced stages (II vs IV p<0.034; III vs IV p<0.041; except II vs III p=0.281), patients with lymph node (N0 vs N1 p<0.0389) or distant (M0 vs. M1 p<0.0388) metastases and significantly lower in patients with well differentiated tumors (G1 vs G2 p<0.0272). The serum levels of soluble FasL were not related to gender, age, tumor size, T-stage, tobacco smoking and history of chronic alcohol intake. The survival difference between pretreatment high and low level of sFasL in surgery and chemio- and/or radiotherapy group was not statistically significant (p=0.525; p=0.840). Our results indicate that elevated serum sFasL levels might be associated with a disease progression in patients with esophageal squamous cell carcinoma.  相似文献   
84.
The role of gap junctions in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation of human arteries was assessed using connexin mimetic peptides (CMPs) designated (37,43)Gap27, (40)Gap27, and (43)Gap26 according to homology with the major vascular connexins (Cx37, Cx40, and Cx43). Resistance arteries were obtained from subcutaneous fat biopsies of healthy pregnant women undergoing elective cesarean section. Endothelium-dependent vasodilatation to bradykinin (BK) was assessed using wire myography. N(omega)-nitro-l-arginine methyl ester (l-NAME) and indomethacin (nitric oxide synthase and cyclooxygenase inhibitors, respectively) attenuated maximal relaxation to BK (R(max)) by approximately 50%. Coincubation with l-NAME, indomethacin, and the combined CMPs ((37,43)Gap27, (40)Gap27, and (43)Gap26) almost abolished relaxation to BK (R(max) = 12.2 +/- 3.7%). In arteries incubated with l-NAME and indomethacin, the addition of either (37,43)Gap27 or (40)Gap27 had no significant effect on R(max), whereas (43)Gap26 caused marked inhibition (R(max) = 21 +/- 6.4%, P = 0.005 vs. l-NAME plus indomethacin alone) that was similar to that of the triple combination. Endothelium-independent vasorelaxation was unaffected by CMPs, l-NAME, or indomethacin. Immunohistochemistry demonstrated Cx37, Cx40, and Cx43 expression in the endothelium and vascular smooth muscle. In pregnant women, EDHF-mediated vasorelaxation of subcutaneous resistance arteries is dependent on Cx43 and gap junctions.  相似文献   
85.
86.
87.
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.  相似文献   
88.
Selective protein degradation through the ubiquitin–26S proteasome system is a key mechanism for post-translational control of regulatory proteins in all eukaryotes. The pivotal components in this system are the multi-subunit E3 Ub-ligase enzymes responsible for specific recognition and ubiquitination of degradation targets. In this review, we focus on plant F-box proteins which confer specificity to the SCF-type E3 enzyme complexes. F-box proteins represent one of the largest and most heterogeneous superfamilies in plants, with hundreds of different representatives exposing an extensive variability of C-terminal target-binding domains, and as such, modulating almost every aspect of plant growth and development. Since the first reports on plant F-box proteins over a decade ago, a lot of progress has been made in our understanding of their relevance for plant physiology. In this review, we combine well-established knowledge with the most recent advances related to plant F-box proteins and their role in plant development, hormone signaling and defense pathways. We also elaborate on the yet poorly described carbohydrate-binding plant F-box proteins presumably targeting glycoproteins for proteasomal degradation.  相似文献   
89.
We have developed a new method for highly selective determination of the ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) concentration using a surface plasmon resonance imaging (SPRI) technique and two different biosensors. UCH-L1 was captured from a solution by immobilized specific rabbit monoclonal antibody or specific LDN-57444 inhibitor due to formation of receptor–UCH-L1 complex on the biosensor surface. The analytically useful dynamic response range of both biosensors is between 0.1 and 2.5 ng/ml. The detection limit is 0.06 ng/ml for the biosensor with antibody and 0.08 ng/ml for the biosensor with inhibitor. Biosensors based on both antibody and inhibitor were found to be suitable for quantitative determination of the UCH-L1 and exhibit good tolerance to the potential interferents. Both biosensors gave comparable results in the range of 0 to 0.20 ng/ml for plasma samples and 0.30 to 0.49 ng/ml for cerebrospinal fluid samples. To validate the new methods, comparative determination of UCH-L1 by the commercial enzyme-linked immunosorbent assay (ELISA) kit was performed. In general, in terms of UCH-L1 concentration, a good correlation between SPRI and ELISA was found. The developed biosensors can be used successfully for the determination of UCH-L1 in body fluids.  相似文献   
90.
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号