首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   808篇
  免费   59篇
  2023年   6篇
  2022年   18篇
  2021年   42篇
  2020年   23篇
  2019年   27篇
  2018年   43篇
  2017年   40篇
  2016年   33篇
  2015年   67篇
  2014年   71篇
  2013年   81篇
  2012年   75篇
  2011年   86篇
  2010年   52篇
  2009年   24篇
  2008年   34篇
  2007年   34篇
  2006年   36篇
  2005年   22篇
  2004年   17篇
  2003年   9篇
  2002年   12篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1964年   1篇
  1941年   1篇
  1939年   1篇
  1905年   1篇
排序方式: 共有867条查询结果,搜索用时 15 毫秒
821.
Biodegradable and biocompatible novel materials of natural origin are gaining more and more attention in recent years. These so called biopolymers, characterized by their biointegrity and biocompatibility, find completely new and promising applications in biomedical sciences. The presented work focuses on the medium chain length elastomeric polyhydroxyalkanoate biopolymer—polyhydroxyoctanoate (PHO). This biopolymer is fully biodegradable without formation of harmful byproducts.We investigated PHO's physical properties with nanoindentation technique and scratch testing to determine Young's modulus and friction coefficient. Further, the work focused on the impact of PHO, used as growth substrate, on the physiology and morphology of mouse embryonic fibroblast cells (MEF 3T3). Application of fluorescent staining protocols and advanced microscopic techniques allowed to study the morphological changes in the cytoskeletons of cells grown on PHO and also gave an insight into their migration strategies on the polymer surface. We found that PHO exhibits no cellular cytotoxicity, similarly to a glass substrate. MEF cells spread better on glass surface than on each tested PHO substrate though there was almost no difference between PHO substrates cast from different solvents. However, a detailed analysis of actin and microtubule cytoskeletal architecture reveals changes in the density of actin and microtubular networks. Migration of MEF cells on PHO substrates was slower than on the glass substrate. To elucidate the molecular mechanisms of observed changes in cytoskeletal architecture and migration parameters can be of special interest for future medical application of PHO polymer.  相似文献   
822.
Restriction-modification systems digest non-methylated invading DNA, while protecting host DNA against the endonuclease activity by methylation. It is widely believed that the methylated DNA would not ‘fit’ into the binding site of the endonuclease in the productive orientation, and thus steric clashes should account for most of the protection. We test this concept statistically by grafting methyl groups in silico onto non-methylated DNA in co-crystal structures with restriction endonucleases. Clash scores are significantly higher for protective than non-protective methylation (P < 0.05% according to the Wilcoxon rank sum test). Structural data alone are sufficient to distinguish between protective and non-protective DNA methylation with 90% confidence and decision thresholds of 1.1 Å and 48 Å3 for the most severe distance-based and cumulative volume-based clash with the protein, respectively (0.1 Å was deducted from each interatomic distance to allow for coordinate errors). The most severe clashes are more pronounced for protective methyl groups attached to the nitrogen atoms (N6-methyladenines and N4-methylcytosines) than for C5-methyl groups on cytosines. Cumulative clashes are comparable for all three types of protective methylation.  相似文献   
823.
Alpine sites in the High Sudetes Mts. host—due to their history and special climatic conditions—unique assemblages of lepidopteran species. We used data from ten of these sites to study species richness of the lepidopteran fauna and to test the effect of site area, distance to the nearest site and connectivity. For this, we used cluster analyses, species–area relationship and the incidence function model, followed by canonical analysis to test the importance of individual factors. The list of species was compiled from available literature sources with regard to recent findings. Species richness depended significantly on all geographic factors—area, distance and connectivity. Large alpine sites were more species-rich than smaller ones and remote sites differed in species composition from the others. We conclude that any decrease of the area of these sites will drastically affect the unique lepidopteran assemblages living in the High Sudetes Mts.  相似文献   
824.
825.
826.
In the absence of specialized mobile immune cells, plants utilize their localized programmed cell death and Systemic Acquired Resistance to defend themselves against pathogen attack. The contribution of a specific Arabidopsis gene to the overall plant immune response can be specifically and quantitatively assessed by assaying the pathogen growth within the infected tissue. For over three decades, the hemibiotrophic bacterium Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) has been widely applied as the model pathogen to investigate the molecular mechanisms underlying the Arabidopsis immune response. To deliver pathogens into the leaf tissue, multiple inoculation methods have been established, e.g., syringe infiltration, dip inoculation, spray, vacuum infiltration, and flood inoculation. The following protocol describes an optimized syringe infiltration method to deliver virulent Psm ES4326 into leaves of adult soil-grown Arabidopsis plants and accurately screen for enhanced disease susceptibility (EDS) towards this pathogen. In addition, this protocol can be supplemented with multiple pre-treatments to further dissect specific immune defects within different layers of plant defense, including Salicylic Acid (SA)-Triggered Immunity (STI) and MAMP-Triggered Immunity (MTI).  相似文献   
827.
EB1 is a conserved protein that plays a central role in regulating microtubule dynamics and organization. It binds directly to microtubule plus ends and recruits other plus end–localizing proteins. Most EB1-binding proteins contain a Ser–any residue–Ile-Pro (SxIP) motif. Here we describe the isolation of peptide aptamers with optimized versions of this motif by screening for interaction with the Drosophila EB1 protein. The use of small peptide aptamers to competitively inhibit protein interaction and function is becoming increasingly recognized as a powerful technique. We show that SxIP aptamers can bind microtubule plus ends in cells and functionally act to displace interacting proteins by competitive binding. Their expression in developing flies can interfere with microtubules, altering their dynamics. We also identify aptamers binding to human EB1 and EB3, which have sequence requirements similar to but distinct from each other and from Drosophila EB1. This suggests that EB1 paralogues within one species may interact with overlapping but distinct sets of proteins in cells.  相似文献   
828.
Endonuclease V (EndoV) is a metal-dependent DNA repair enzyme involved in removal of deaminated bases (e.g., deoxyuridine, deoxyinosine, and deoxyxanthosine), with pairing specificities different from the original bases. Homologs of EndoV are present in all major phyla from bacteria to humans and their function is quite well analyzed. EndoV has been combined with DNA ligase to develop an enzymatic method for mutation scanning and has been engineered to obtain variants with different substrate specificities that serve as improved tools in mutation recognition and cancer mutation scanning. However, little is known about the structure and mechanism of substrate DNA binding by EndoV. Here, we present the results of a bioinformatic analysis and a structural model of EndoV from Escherichia coli in complex with DNA. The structure was obtained by a combination of fold-recognition, comparative modeling, de novo modeling and docking methods. The modeled structure provides a convenient tool to study protein sequence-structure-function relationships in EndoV and to engineer its further variants.  相似文献   
829.
Protein folding is a fundamental life process with many implications throughout biology and medicine. Consequently, there have been enormous efforts to understand how proteins fold. Almost all of this effort has focused on water-soluble proteins, however, leaving membrane proteins largely wandering in the wilderness. The neglect has occurred not because membrane proteins are unimportant but rather because they present many theoretical and technical complications. Indeed, quantitative membrane protein folding studies are generally restricted to a handful of well-behaved proteins. Single-molecule methods may greatly alter this picture, however, because the ability to work at or near infinite dilution removes aggregation problems, one of the main technical challenges of membrane protein folding studies.  相似文献   
830.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号