首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2661篇
  免费   197篇
  2858篇
  2022年   31篇
  2021年   65篇
  2020年   27篇
  2019年   48篇
  2018年   63篇
  2017年   53篇
  2016年   57篇
  2015年   111篇
  2014年   138篇
  2013年   151篇
  2012年   155篇
  2011年   166篇
  2010年   87篇
  2009年   78篇
  2008年   99篇
  2007年   122篇
  2006年   104篇
  2005年   94篇
  2004年   93篇
  2003年   66篇
  2002年   65篇
  2001年   59篇
  2000年   64篇
  1999年   56篇
  1998年   37篇
  1997年   41篇
  1996年   31篇
  1995年   36篇
  1994年   22篇
  1993年   34篇
  1992年   35篇
  1991年   29篇
  1990年   33篇
  1989年   35篇
  1988年   38篇
  1987年   35篇
  1986年   47篇
  1985年   32篇
  1984年   31篇
  1983年   16篇
  1982年   16篇
  1981年   23篇
  1980年   15篇
  1979年   36篇
  1978年   23篇
  1977年   19篇
  1976年   24篇
  1975年   21篇
  1974年   28篇
  1973年   17篇
排序方式: 共有2858条查询结果,搜索用时 15 毫秒
51.
The aim of the present study was to measure zinc (Zn) and iron (Fe) concentration in human semen and superoxide dismutase (SOD) activity in seminal plasma and correlate the results with sperm quality. Semen samples were obtained from men (N = 168) undergoing routine infertility evaluation. The study design included two groups based on the ejaculate parameters. Group I (n = 39) consisted of males with normal ejaculate (normozoospermia), and group II (n = 129) consisted of males with pathological spermiogram. Seminal Zn and Fe were measured in 162 samples (group I, n = 38; group II, n = 124) and SOD activity in 149 samples (group I, n = 37; group II, n = 112). Correlations were found between SOD activity and Fe and Zn concentration, and between Fe and Zn concentration. SOD activity was negatively associated with volume of semen and positively associated with rapid progressive motility, nonprogressive motility, and concentration. Negative correlation was stated between Fe concentration and normal morphology. Mean SOD activity in seminal plasma of semen from men of group I was higher than in seminal plasma of semen from men of group II. Fe concentration was higher in teratozoospermic males than in males with normal morphology of spermatozoa in group II. Our results suggest that Fe may influence spermatozoa morphology.  相似文献   
52.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   
53.
54.
Enzymatic catalysis in microemulsions: enzyme reuse and product recovery   总被引:1,自引:0,他引:1  
A technique for enzyme reuse and product recovery from enzymatic catalysis in microemulsions is demonstrated. The enzymatic reaction is performed in a homogeneous isotropic microemulsion; AOT (sodium bis-(2-ethyl- hexyl)sulfosuccinate)/isooctane/buffer or C(12)E(5)(penta ethylene glycol dodecyl ether)/heptane/buffer. By small temperature changes the systems are shifted to two phase regions, where an oil-rich phase, containing the product, coexists with a water-rich phase containing surfactant and enzyme. The oil-rich phase may be replaced by an oil solution containing new substrate. Thus, the reaction may be continued and the enzyme reused. This procedure was repeated nine times in the present study. Data on phase behavior in presence and in absence of protein, partitioning of the components and a radioactive-labelled protein between the phases, and the repeated use of horse liver alcohol dehydrogenase (HLADH) in the microemulsions are presented.  相似文献   
55.
Summary To investigate whether anti-(carcinoembryonic antigen) monoclonal antibodies (mAb) react with single or repeated epitopes, sandwich radioimmunoassays in homologous and heterologous combinations were performed. Four mAb (I-27, I-47, II-17 and to some degree II-16) gave homologous binding while two mAb (I-38S1 and II-10) did not. Taken together with previous immunoprecipitation studies we conclude that all these mAb except II-10 react with repeated epitopes. The relative positions of the epitopes recognized by these mAb and of three additional mAb (II-6, II-7 and CB-CEA-1) were investigated using a plate antibody competition test with enzyme-labelled carcinoembryonic antigen (CEA). mAb I-38S1, II-6, II-7, II-10, II-16 and CB-CEA-1 were mutually cross-reactive, and were classified as belonging to one epitope group. mAb I-27 and I-47 fell outside this group and did not interfere with the binding of CEA conjugate to mAb II-17 either. They therefore represent a second epitope group. mAb II-17 showed no interference with the binding of CEA to any of the other mAb and must therefore represent a third epitope group. The slopes of the plate antibody competition curves were used for calculation of a correlation matrix, which in turn was used to depict the relative positions of the epitopes recognized by the mAb in the large group.  相似文献   
56.
Gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) was applied to identify microbial volatile organic compounds (MVOCs) in water-damaged, mold-infested building materials (gypsum board papers (n=2), mineral wool, and masonite) and in cultivated molds (Aspergillus penicillioides, Stachybotrys chartarum, and Chaetomium globosum). Three SPME fibers (65-microm PDMS-DVB, 75-microm Carboxen-PDMS, and 70-microm Carbowax-stableflex) designed for automated injection were used of which the latter showed best performance. A number of previously reported MVOCs were detected both in the building materials and the cultivated molds. In addition, methyl benzoate was identified both in the S. chartarum and A. penicillioides cultures and in the building materials. SPME combined with GC-MS may be a useful method for the determination of MVOCs emitted from mold-infested building materials.  相似文献   
57.
This study is the first large‐scale genetic population study of a widespread climax species of seagrass, Thalassia hemprichii, in the Western Indian Ocean (WIO). The aim was to understand genetic population structure and connectivity of T. hemprichii in relation to hydrodynamic features. We genotyped 205 individual seagrass shoots from 11 sites across the WIO, spanning over a distance of ~2,700 km, with twelve microsatellite markers. Seagrass shoots were sampled in Kenya, Tanzania (mainland and Zanzibar), Mozambique, and Madagascar: 4–26°S and 33–48°E. We assessed clonality and visualized genetic diversity and genetic population differentiation. We used Bayesian clustering approaches (TESS) to trace spatial ancestry of populations and used directional migration rates (DivMigrate) to identify sources of gene flow. We identified four genetically differentiated groups: (a) samples from the Zanzibar channel; (b) Mozambique; (c) Madagascar; and (d) the east coast of Zanzibar and Kenya. Significant pairwise population genetic differentiation was found among many sites. Isolation by distance was detected for the estimated magnitude of divergence (DEST), but the three predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) also determine genetic connectivity and genetic structure. Directional migration rates indicate that Madagascar acts as an important source population. Overall, clonality was moderate to high with large differences among sampling sites, indicating relatively low, but spatially variable sexual reproduction rates. The strongest genetic break was identified for three sites in the Zanzibar channel. Although isolation by distance is present, this study suggests that the three regionally predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) rather than distance determine genetic connectivity and structure of T. hemprichii in the WIO. If the goal is to maintain genetic connectivity of T. hemprichii within the WIO, conservation planning and implementation of marine protection should be considered at the regional scale—across national borders.  相似文献   
58.
Epigenetic modifications are involved in the initiation and progression of cancer. Expression patterns and activity of DNA methyltransferases (DNMTs) are strictly controlled in normal cells; however, regulation of these enzymes is lost in cancer cells due to unknown reasons. Cancer therapies which target DNMTs are promising treatments of hematologic cancers, but they lack effectiveness in solid tumors. Solid tumors exhibit areas of hypoxia and hypoglycaemia due to their irregular and dysfunctional vasculature, and we previously showed that hypoxia reduces global DNA methylation. Colorectal carcinoma (CRC) cells (HCT116 and 379.2; p53+/+ and p53-/-, respectively) were subjected to ischemia (hypoxia and hypoglycaemia) in vitro and levels of DNMTs were assessed. We found a significant decrease in mRNA for DNMT1, DNMT3a and DNMT3b, and similar reductions in DNMT1 and DNMT3a protein levels were detected by western blotting. In addition, total activity levels of DNMTs (as measured by an ELISA-based DNMT activity assay) were reduced in cells exposed to hypoxic and hypoglycaemic conditions. Immunofluorescence of HCT116 tumor xenografts demonstrated an inverse relationship between ischemia (as revealed by carbonic anhydrase IX staining) and DNMT1 protein. Bisulfite sequencing of the proximal promoter region of p16INK4a showed a decrease in 5-methylcytosine following in vitro exposure to ischemia. These studies provide evidence for the downregulation of DNMTs and modulation of methylation patterns by hypoxia and hypoglycaemia in human CRC cells, both in vitro and in vivo. Our findings suggest that ischemia, either intrinsic or induced through the use of anti-angiogenic drugs, may influence epigenetic patterning and hence tumor progression.Key words: DNA methylation, DNA methyltransferases, colorectal carcinoma, ischemia, p53, hypoxia, hypoglycaemia  相似文献   
59.
Villin and gelsolin consist of six homologous domains of the gelsolin/cofilin fold (V1–V6 and G1–G6, respectively). Villin differs from gelsolin in possessing at its C terminus an unrelated seventh domain, the villin headpiece. Here, we present the crystal structure of villin domain V6 in an environment in which intact villin would be inactive, in the absence of bound Ca2+ or phosphorylation. The structure of V6 more closely resembles that of the activated form of G6, which contains one bound Ca2+, rather than that of the calcium ion-free form of G6 within intact inactive gelsolin. Strikingly apparent is that the long helix in V6 is straight, as found in the activated form of G6, as opposed to the kinked version in inactive gelsolin. Molecular dynamics calculations suggest that the preferable conformation for this helix in the isolated G6 domain is also straight in the absence of Ca2+ and other gelsolin domains. However, the G6 helix bends in intact calcium ion-free gelsolin to allow interaction with G2 and G4. We suggest that a similar situation exists in villin. Within the intact protein, a bent V6 helix, when triggered by Ca2+, straightens and helps push apart adjacent domains to expose actin-binding sites within the protein. The sixth domain in this superfamily of proteins serves as a keystone that locks together a compact ensemble of domains in an inactive state. Perturbing the keystone initiates reorganization of the structure to reveal previously buried actin-binding sites.Actin is crucial to such processes as cell movement, cell division, and apoptosis, which are regulated by numerous actin-binding proteins, including gelsolin, Arp2/3, and profilin (for review, see Ref. 1). Gelsolin, the most potent actin filament-severing protein known, can bind to, sever, cap, and nucleate actin filaments in a calcium-, pH-, ATP-, and phospholipid-dependent manner (for review, see Ref. 2). Villin, found in microvilli of absorptive epithelium, is a second member of the gelsolin family of actin-binding proteins. In addition to standard gelsolin-type activities, villin is able to bundle actin filaments and is subject to regulation by tyrosine phosphorylation as well as by Ca2+ and phosphatidylinositol 4,5-bisphosphate (for review, see Ref. 3). Many comparisons have been made between gelsolin and villin. The two share 50% amino acid sequence identity and show similar proteolytic cleavage patterns (4). Both contain six similarly folded domains, but villin possesses a seventh domain at its C terminus, the headpiece (HP)2 domain, which folds into a compact structure that introduces a second F-actin-binding site into the protein. Recent studies indicate that villin uses the HP F-actin-binding sites to achieve bundling (5). In an environment devoid of free Ca2+, gelsolin and villin assume inactive conformations. After binding Ca2+, both undergo conformational rearrangements that expose their binding sites for F-actin. In villin, this includes revealing the HP actin-binding site through a “hinge mechanism” (6).Biochemical and structural studies have revealed eight Ca2+-binding sites of two types in gelsolin (for review, see Ref. 7). Each of the six domains contains a complete and evolutionarily conserved site, termed type 2, whereas G1 and G4 provide partial Ca2+ coordination at interfaces with actin through sites termed type 1. Sequential mutagenesis of these sites in villin has identified six functional Ca2+-binding sites (8): two major sites, one each of type 1 and type 2, in V1, plus four type 2 sites in V2–V6. The type 1 site in V1 regulates F-actin-capping and F-actin-severing activities, whereas the lower affinity type 2 site in V1 only affects severing (9). The other four sites are involved in stabilizing villin conformation, but they do not directly influence actin-severing activity. NMR studies of a fragment of villin that consists of V6 and the HP domain have implicated V6 residues Asn647, Asp648, and Glu670 in binding Ca2+ (10). These experiments also revealed the first 80 residues of V6 to undergo significant conformational change as a result of Ca2+ binding.Nanomolar to micromolar concentrations of free Ca2+ govern the actin-binding activities of gelsolin. In contrast, micromolar and millimolar concentrations of calcium ions are required for villin to exhibit capping and severing, respectively. However, after tyrosine phosphorylation, villin can sever actin filaments even at nanomolar Ca2+ concentrations (11). Furthermore, although the actin-severing ability of the N-terminal half of villin is calcium-dependent, that by the N-terminal half of gelsolin is not. In contrast, the binding of G-actin of the C-terminal half of both villin and gelsolin requires Ca2+. Creation of hybrid proteins demonstrated that the domains of villin and gelsolin are not interchangeable (12).Abundant x-ray crystallographic structural information exists for gelsolin, including the calcium ion-free (Ca2+-free), inactive structure of the intact protein (13), the activated N- and C-terminal halves, each in a bimolecular complex with actin (7, 14), and the activated C-terminal half on its own (15, 16). Structural data for intact villin are unavailable and are limited to fragment V1 (17), solved using NMR methods, and the HP domain, solved by NMR and x-ray crystallography (18, 19). NMR experiments also indicate that HP is connected to V6 by a 40-residue disordered linker. As a result, HP has been proposed to bind actin independently of the remainder of the protein (10).In this report, we present the structure of Ca2+-free, isolated villin V6, which exhibits a typical gelsolin domain fold. The long helix in V6 in this structure is straight, unlike the corresponding helix in G6 of intact Ca2+-free gelsolin, which is bent, and only straightens on calcium activation of the intact protein. Hence, V6 appears to be in an active conformation in the absence of Ca2+. Molecular dynamics simulations indicate that the preferred state of the long helix is also straight for isolated G6 in the absence of Ca2+. Furthermore, they suggest a bistable mechanism of helix conformational change regulated by the presence of the remaining domains, by calcium ions, and by other interactants. We therefore propose a mechanism for the gelsolin family proteins whereby Ca2+ triggers the straightening of the domain 6 helix in the native conformation of the inactive proteins to propagate more widespread conformational changes.  相似文献   
60.
An oscillatory increase in pancreatic beta cell cytoplasmic free Ca2+ concentration, [Ca2+]i, is a key feature in glucose-induced insulin release. The role of the voltage-gated Ca2+ channel beta3 subunit in the molecular regulation of these [Ca2+]i oscillations has now been clarified by using beta3 subunit-deficient beta cells. beta3 knockout mice showed a more efficient glucose homeostasis compared to wild-type mice due to increased glucose-stimulated insulin secretion. This resulted from an increased glucose-induced [Ca2+]i oscillation frequency in beta cells lacking the beta3 subunit, an effect accounted for by enhanced formation of inositol 1,4,5-trisphosphate (InsP3) and increased Ca2+ mobilization from intracellular stores. Hence, the beta3 subunit negatively modulated InsP3-induced Ca2+ release, which is not paralleled by any effect on the voltage-gated L type Ca2+ channel. Since the increase in insulin release was manifested only at high glucose concentrations, blocking the beta3 subunit in the beta cell may constitute the basis for a novel diabetes therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号