首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2365篇
  免费   269篇
  2634篇
  2022年   21篇
  2021年   29篇
  2020年   18篇
  2019年   20篇
  2018年   31篇
  2017年   24篇
  2016年   45篇
  2015年   81篇
  2014年   100篇
  2013年   92篇
  2012年   132篇
  2011年   115篇
  2010年   82篇
  2009年   58篇
  2008年   137篇
  2007年   119篇
  2006年   109篇
  2005年   93篇
  2004年   85篇
  2003年   96篇
  2002年   67篇
  2001年   74篇
  2000年   87篇
  1999年   72篇
  1998年   27篇
  1997年   22篇
  1996年   17篇
  1995年   18篇
  1994年   21篇
  1993年   18篇
  1992年   57篇
  1991年   34篇
  1990年   35篇
  1989年   34篇
  1988年   39篇
  1987年   33篇
  1986年   33篇
  1985年   33篇
  1984年   19篇
  1983年   28篇
  1981年   17篇
  1980年   24篇
  1979年   33篇
  1978年   17篇
  1976年   17篇
  1975年   17篇
  1974年   32篇
  1970年   16篇
  1969年   16篇
  1968年   18篇
排序方式: 共有2634条查询结果,搜索用时 15 毫秒
71.
72.
73.

Background

Dyslipoproteinemia, obesity and insulin resistance are integrative constituents of the metabolic syndrome and are major risk factors for hypertension. The objective of this study was to determine whether hypertension specifically affects the plasma lipidome independently and differently from the effects induced by obesity and insulin resistance.

Methodology/Principal Findings

We screened the plasma lipidome of 19 men with hypertension and 51 normotensive male controls by top-down shotgun profiling on a LTQ Orbitrap hybrid mass spectrometer. The analysis encompassed 95 lipid species of 10 major lipid classes. Obesity resulted in generally higher lipid load in blood plasma, while the content of tri- and diacylglycerols increased dramatically. Insulin resistance, defined by HOMA-IR >3.5 and controlled for BMI, had little effect on the plasma lipidome. Importantly, we observed that in blood plasma of hypertensive individuals the overall content of ether lipids decreased. Ether phosphatidylcholines and ether phosphatidylethanolamines, that comprise arachidonic (20∶4) and docosapentaenoic (22∶5) fatty acid moieties, were specifically diminished. The content of free cholesterol also decreased, although conventional clinical lipid homeostasis indices remained unaffected.

Conclusions/Significance

Top-down shotgun lipidomics demonstrated that hypertension is accompanied by specific reduction of the content of ether lipids and free cholesterol that occurred independently of lipidomic alterations induced by obesity and insulin resistance. These results may form the basis for novel preventive and dietary strategies alleviating the severity of hypertension.  相似文献   
74.
Sixteen clients afflicted with irritable bowel syndrome (IBS) were reassessed 1 year following completion of a multicomponent treatment package incorporating progressive muscle relaxation, thermal biofeedback, cognitive therapy, and IBS education. For the 14 patients who kept a 2-week symptom diary, significant reductions in ratings of abdominal pain and tenderness, diarrhea, and flatulence were obtained comparing pretreatment and follow-up symptom-diary ratings. Eleven of 14 clients were improved over pretreatment levels, 57% met the criteria for clinical improvement of at least a 50% reduction in major symptom scores, and all but 1 of 16 rated themselves as subjectively improved.  相似文献   
75.
LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15–30% lower circulating LDL-C and a disproportionately lower risk (47–88%) of experiencing a cardiovascular event. Here, we utilized pcsk9−/− mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9−/− mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (−45%) and TGs (−36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (−91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.  相似文献   
76.
A variety of eukaryotic cell surface proteins, including the variant surface glycoproteins of African trypanosomes, rely on a covalently attached lipid, glycosylphosphatidylinositol (GPI), for membrane attachment. GPI anchors are synthesized in the endoplasmic reticulum by stepwise glycosylation of phosphatidylinositol (via UDP-GlcNAc and dolichol-P-mannose) followed by the addition of phosphoethanolamine. The experiments described in this paper are aimed at identifying the biosynthetic origin of the terminal phosphoethanolamine group. We show that trypanosome GPIs can be labelled via CDP-[3H]ethanolamine or [beta-32P]CDP-ethanolamine in a cell-free system, indicating that phosphoethanolamine is acquired en bloc. In pulse-chase experiments with CDP-[3H]ethanolamine we show that the GPI phosphoethanolamine is not derived directly from CDP-ethanolamine, but instead from a relatively stable metabolite, such as phosphatidylethanolamine (PE), generated from CDP-ethanolamine in the cell-free system. To test the possibility that PE is the immediate donor of the GPI phosphoethanolamine moiety, we describe metabolic labelling experiments with [3H]serine and show that GPIs can be labelled in the absence of detectable radiolabelled CDP-ethanolamine, presumably via [3H]PE generated from [3H]phosphatidylserine (PS). The data support the proposal that the terminal phosphoethanolamine group in trypanosome GPIs is derived from PE.  相似文献   
77.
The surface antigens of the free-living protozoan Paramecium primaurelia belong to the family of glycosylphosphatidylinositol (GPtdIns)-anchored proteins. Using a cell-free system prepared from P. primaurelia, we have described the structure and biosynthetic pathway for GPtdIns glycolipids. The core glycans of the polar glycolipids are modified by a mannosyl phosphate side chain. The data suggest that the mannosyl phosphate side chain is added onto the core glycan in two steps. The first step involves the phosphorylation of the GPtdIns trimannosyl conserved core glycan via an ATP-dependent kinase, prior to the addition of the mannose linked to the phosphate group. We show that dolichol phosphate mannose is the donor of all mannose residues including the mannose linked to phosphate. Furthermore, we were able to identify in vitro a hydrophilic intermediate containing an additional N-acetylgalactosamine linked to the mannosyl phosphate side chain. The addition of this purified hydrophilic radiolabelled intermediate into the cell-free system leads to a loss of the GalNAc residue and its conversion to the penultimate intermediate having only mannosyl phosphate as a side chain. Together the data indicate that the GalNAc-containing intermediate is a transitional intermediate. We suggest that the GalNAc-containing intermediate is essential for biosynthesis and maturation of GPtdIns precursors. It is hypothesized that this oligosaccharide processing in the course of GPtdIns biosynthesis is required for the translocation of GPtdIns from the cytoplasmic side of the endoplasmic reticulum to the luminal side.  相似文献   
78.
79.
GDP- and UDP-deoxyglucose inhibit the incorporation of glucose from UDP-glucose into dolichyl phosphate glucose and dolichyl pyrophosphate oligosaccharides. GDP-deoxyglucose inhibits by competing with the physiological nucleotide sugars for dolichyl phosphate, and dolichyl phosphate deoxyglucose is formed. This inhibition is reversed by excess of dolichyl phosphate. UDP-deoxyglucose does not give rise to a lipid-linked derivative, and inhibition by this analog is not reversed by dolichyl phosphate. The UDP- and GDP-derivatives of deoxyglucose inhibit the incorporation of glucose into glucose-containing glycoproteins. This effect seems to be the result of the inhibition of lipid intermediates glucosylation and is comparable to the effect produced by coumarin. Cellulose synthetase activity is not affected by UDP- or GDP-deoxyglucose. On the other hand, deoxyglucose inhibits the formation of β-1,4-glucans in vivo.  相似文献   
80.
Here we present a model for maltodextrin translocation through maltoporin channels. In a first step, our theoretical analysis does consider the case of a single binding site for a given substrate in a structurally unaffected channel with a possibly different entrance barrier on either side. It is shown how by means of conventional electrical conductance measurements (including current noise analysis) the basic equilibrium and rate constants can be determined as functions of the applied voltage. Then also the net translocation rate of the substrate becomes accessible quantitatively. This most simple model mechanism has been extended to include a voltage-dependent fast conformational change of the channel that prevents the binding process. The so developed approach has been tested with experimental data for a single maltoporin trimer being reconstituted in black lipid membranes when studied in the presence of maltohexaose as the substrate. The experimental results turned out to be clearly incompatible with binding alone. They are, however, very satisfactorily fitted by pertinent theoretical curves if also inhibition of binding by a conformational transition is taken into account. Accordingly, quantitative evaluations of the underlying parameters and eventually of the translocation rate have been carried out successfully. Our analysis reveals a set of parameters necessary for an optimal translocation that nicely corresponds to natural conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号