首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   10篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   21篇
  2013年   11篇
  2012年   19篇
  2011年   17篇
  2010年   4篇
  2009年   3篇
  2008年   12篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
  1988年   2篇
排序方式: 共有163条查询结果,搜索用时 46 毫秒
31.
The post‐translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin‐like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO‐modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome‐targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome‐targeting is crucially required for the repair of TRF2‐depleted dysfunctional telomeres by 53BP1‐mediated non‐homologous end joining.  相似文献   
32.
In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems.  相似文献   
33.
Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD–2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors.  相似文献   
34.
The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA–Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.  相似文献   
35.
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR. In contrast to this role for 53BP1 in HR in G2 phase, we show that it is dispensable for HR in S phase, where HC regions are likely relaxed during replication.  相似文献   
36.
Frykholm K  Morimatsu K  Nordén B 《Biochemistry》2006,45(37):11172-11178
RecA protein and its eukaryotic homologue Rad51 protein catalyzes the DNA strand exchange, which is a key reaction of homologous recombination. At the initial step of the reaction, RecA proteins form a helical filament on a single-stranded DNA (ssDNA). Binding of double-stranded DNA (dsDNA) to the filament triggers the homology search; as homology is found, the exchange of strands occurs, and the displaced DNA is released. These are the principal steps of genetic recombination; however, despite many years of extensive study of RecA activities, the details of the mechanism are still obscure. A high-resolution structure of the active nucleoprotein filament could provide information to help understand this process. Using a linear dichroism polarized-light spectroscopy technique, in combination with protein engineering (the site-specific linear dichroism method), we have previously studied the arrangement of RecA in complex with ssDNA. In the present study, we have used this approach to search for structural variations of RecA at the atomic level as the DNA in the complex is changed from ssDNA to dsDNA. The structural data of the RecA-dsDNA filament are found to be very similar to the data previously obtained for the RecA-ssDNA complex, indicating that the overall orientation and also the internal structure of RecA in the active filament are not markedly altered when the bound DNA changes from single- to double-stranded. The implications of the structural similarities as well as the significance of some conformational variations observed for a few amino acid residues that may be involved in interactions with DNA are discussed.  相似文献   
37.
Ghrelin is a unique bioactive peptide with respect to both the structure and its biological function. This 28‐amino acid peptide is modified with an n‐octanoyl group at serine‐3, and accordingly is the only lipidated biologically active peptide hormone known so far. Ghrelin binds to the so‐called ghrelin or GHS receptor, a member of the class A of G‐protein coupled receptors, which leads to Ca2+ release intracellularly due to the activation of the Gq‐system. Interestingly, the ghrelin receptor shows a significant constitutive activity which means that in addition to agonists and antagonists, inverse agonists play an important role in receptor modulation. In this review, the major activities of ghrelin are summarized with a strong focus on the regulation of food intake. So far reported agonists, antagonists and inverse agonists are shown and structure activitiy relationships are discussed. Furthermore, the application of ghrelin ligands as novel anti‐obesity drugs is outlined and the state of the art in this field is summarized. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
38.
39.
A new fluorescence spectroscopic method is presented for determining intramolecular and intermolecular distances in proteins and protein complexes, respectively. The method circumvents the general problem of achieving specific labeling with two different chromophoric molecules, as needed for the conventional donor-acceptor transfer experiments. For this, mutant forms of proteins that contain one or two unique cysteine residues can be constructed for specific labeling with one or two identical fluorescent probes, so-called donors (d). Fluorescence depolarization experiments on double-labeled Cys mutant monitor both reorientational motions of the d molecules, as well as the rate of intramolecular energy migration. In this report a model that accounts for these contributions to the fluorescence anisotropy is presented and experimentally tested. Mutants of a protease inhibitor, plasminogen activator inhibitor type-1 (PAI-1), containing one or two cysteine residues, were labeled with sulfhydryl specific derivatives of 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacence (BODIPY). From the rate of energy migration, the intramolecular distance between the d groups was calculated by using the Forster mechanism and by accounting for the influence of local anisotropic orientation of the d molecules. The calculated intramolecular distances were compared with those obtained from the crystal structure of PAI-1 in its latent form. To test the stability of parameters extracted from experiments, synthetic data were generated and reanalyzed.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号