首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   12篇
  2022年   1篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   12篇
  2012年   10篇
  2011年   10篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   8篇
  2006年   11篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  1999年   1篇
  1998年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1974年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
81.
Interleukin-6 is one of the most prominent triggers of inflammatory processes. We have shown recently that heteroarylketones (HAKs) interfere with stimulated interleukin-6 expression in astrocytes by suppression of STAT3 phosphorylation at serine 727. Surprisingly, this effect is not based on the inhibition of STAT3-relevant kinases. Therefore, we here used the structurally modified HAK compound biotin-HAK-3 in a reverse chemical approach to identify the relevant molecular target in UV-mediated cross-linking experiments. Employing streptavidin-specific 2D-immunoblotting followed by mass spectrometry we identified nine proteins putatively interacting with biotin-HAK-3. After co-immunoprecipitation, co-immunofluorescence, surface plasmon resonance analyses and RNAi-mediated knock-down, the eukaryotic elongation factor 1A1 (eEF1A1) was verified as the relevant target of HAK bioactivity. eEF1A1 forms complexes with STAT3 and PKCδ, which are crucial for STAT3S727 phosphorylation and for NF-κB/STAT3-enhanced interleukin-6 expression. Furthermore, the intracellular HAK accumulation is strongly dependent on eEF1A1 expression. Taken together, the results reveal a novel molecular mechanism for a non-canonical role of eEF1A1 in signal transduction via direct modulation of kinase-dependent phosphorylation events.  相似文献   
82.
83.
Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1–30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1–30 kb CNV, 1–30 kb deletions, and 1–10 kb deletions in ASD. CNV in the 1–30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1–30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes.  相似文献   
84.
Regulation of cell growth and protein expression potentially results in a sustainable enhancement of the volumetric productivity in a fermentation process. Following a biphasic cultivation strategy the process initially passes through a cell proliferation phase to generate a sufficiently high viable cell mass. In the subsequent production phase cells are maintained viable and productive without significant cell proliferation leading to increased viable cell days and product yields. In a previous work we have shown that the well directed alteration of the process environment based on process parameter shifting is a promising tool to regulate cell growth and protein expression. In continuation of this work we investigated process parameters which have been identified to affect cell proliferation in favor of an increased specific productivity and total product yield in a series of biphasic batch cultivation experiments. In most of these processes the integral of viable cells and the specific productivity were increased leading to a significant improvement of both final product concentration and volumetric productivity. In addition, combined parameter shifts (pH 6.90/30 degrees C and pH 6.90/33 degrees C) exerted a synergistic effect on product quality. The loss of product sialylation which occurred at reduced temperatures was prevented by simultaneously reducing the external pH. In conclusion, biphasic cultivation based on combined shifting of process parameters is a suitable tool for controlling cell proliferation and protein expression of mammalian cells in a batch bioreactor leading to enhanced volumetric productivities and therefore offers an enormous potential for bioprocess optimization.  相似文献   
85.
The anaerobic and aerobic metabolism of acetone and butanone in the betaproteobacterium "Aromatoleum aromaticum" is initiated by their ATP-dependent carboxylation to acetoacetate and 3-oxopentanoic acid, respectively. Both reactions are catalyzed by the same enzyme, acetone carboxylase, which was purified and characterized. Acetone carboxylase is highly induced under growth on acetone or butanone and accounts for at least 5.5% of total cell protein. The enzyme consists of three subunits of 85, 75, and 20 kDa, respectively, in a (αβγ)(2) composition and contains 1 Zn and 2 Fe per heterohexamer but no organic cofactors. Chromatographic analysis of the ATP hydrolysis products indicated that ATP was exclusively cleaved to AMP and 2 P(i). The stoichiometry was determined to be 2 ATP consumed per acetone carboxylated. Purified acetone carboxylase from A. aromaticum catalyzes the carboxylation of acetone and butanone as the only substrates. However, the enzyme shows induced (uncoupled) ATPase activity with many other substrates that were not carboxylated. Acetone carboxylase is a member of a protein family that also contains acetone carboxylases of various other organisms, acetophenone carboxylase of A. aromaticum, and ATP-dependent hydantoinases/oxoprolinases. While the members of this family share several characteristic features, they differ with respect to the products of ATP hydrolysis, subunit composition, and metal content.  相似文献   
86.
Anaerobic ethylbenzene metabolism in the betaproteobacterium Aromatoleum aromaticum is initiated by anaerobic oxidation to acetophenone via (S)-1-phenylethanol. The subsequent carboxylation of acetophenone to benzoylacetate is catalyzed by an acetophenone-induced enzyme, which has been purified and studied. The same enzyme is involved in acetophenone metabolism in the absence of ethylbenzene. Acetophenone carboxylase consists of five subunits with molecular masses of 70, 15, 87, 75, and 34 kDa, whose genes (apcABCDE) form an apparent operon. The enzyme is synthesized at high levels in cells grown on ethylbenzene or acetophenone, but not in cells grown on benzoate. During purification, acetophenone carboxylase dissociates into inactive subcomplexes consisting of the 70-, 15-, 87-, and 75-kDa subunits (apcABCD gene products) and the 34-kDa subunit (apcE gene product), respectively. Acetophenone carboxylase activity was restored by mixing the purified subcomplexes. The enzyme contains 1 Zn2+ ion per αβγδ core complex and is dependent on the presence of Mg2+ or Mn2+. In spite of the presence of Zn in the enzyme, it is strongly inhibited by Zn2+ ions. Carboxylation of acetophenone is dependent on ATP hydrolysis to ADP and Pi, exhibiting a stoichiometry of 2 mol ATP per mol acetophenone carboxylated. The enzyme shows uncoupled ATPase activity with either bicarbonate or acetophenone in the absence of the second substrate. These observations indicate that both substrates may be phosphorylated, which is consistent with isotope exchange activity observed with deuterated acetophenone and inhibition by carbamoylphosphate, a structural analogue of carboxyphosphate. A potential mechanism of ATP-dependent acetophenone carboxylation is suggested.Ethylbenzene belongs to the BTEX (benzene, toluene, ethylbenzene, and xylene) group of petroleum-derived hydrocarbons with extensive industrial and ecological relevance. Anaerobic catabolism of ethylbenzene proceeds via different pathways in denitrifying and sulfate-reducing bacteria. The latter generate a succinate adduct of ethylbenzene as the first intermediate, probably by addition of fumarate to the methylene carbon atom (14). However, denitrifying bacteria are capable of oxygen-independent hydroxylation of the methylene group of ethylbenzene to yield (S)-1-phenylethanol (1, 12, 20), which is catalyzed by the molybdenum enzyme ethylbenzene dehydrogenase (11, 15, 21). The pathway continues with the oxidation of (S)-1-phenylethanol to acetophenone by an alcohol dehydrogenase (10, 16). Acetophenone may also be produced from (R)-1-phenylethanol or directly used as a substrate. The enzymes of further acetophenone catabolism are uncharacterized. From the observed CO2 dependence of ethylbenzene and acetophenone degradation, acetophenone was proposed to be carboxylated to benzoylacetate, which is then activated to the coenzyme A (CoA) thioester and thiolytically cleaved to benzoyl-CoA and acetyl-CoA (1, 6, 20, 22). On the level of benzoyl-CoA, the pathway of anaerobic ethylbenzene degradation flows into that of anaerobic benzoate degradation (for reviews, see references 2, 8, and 9) (Fig. (Fig.11).Open in a separate windowFIG. 1.Proposed catabolic pathway of ethylbenzene, phenylethanol, and acetophenone in A. aromaticum strain EbN1.In this communication, we identify and characterize the postulated enzyme responsible for acetophenone carboxylation in Aromatoleum aromaticum strain EbN1. The enzyme is specifically induced in ethylbenzene- and acetophenone-grown cells. Acetophenone carboxylation is shown to be dependent on ATP hydrolysis, reminiscent of but distinct from the related carboxylation of acetone (25).  相似文献   
87.
In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, β-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO−/−) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO−/− as compared to Wild-type testes. Ultrastructural analysis revealed disappearance of gap junctions, the presence of tight and adherens junctions and persistent integrity of the blood-testis barrier in SCCx43KO−/− testis. Occludin, N-cadherin and β-catenin levels were enhanced in SCCx43KO−/− mice as compared to Wild-type animals whereas ZO-1 levels were reduced. Cx43 siRNA blocked gap junction functionality in Sertoli cells and altered tight and adherens protein levels. The Cx43 control of tight and adherens junctions appeared channel-dependent since gap junction blockers (glycyrrhetinic acid and oleamide) led to similar results. These data suggest that the control of spermatogenesis by Cx43 may be mediated through Sertoli cell Cx43 channels, which are required, not only in cell/cell communication between Sertoli and germ cells, but also in the regulation of other junctional proteins essential for the blood-testis barrier.  相似文献   
88.
The expression of recombinant trypsinogens from different mammalian origins in Escherichia coli typically leads to the formation of insoluble aggregates. This work describes the high level expression of human trypsinogen 1 in E. coli using the T7 expression system. Direct expression of trypsinogen was not possible, but the N-terminal fusion of the first 11 amino acids of the T7 protein 10 resulted in an expression level of 200 mg g(-1) bacterial dry mass. A refolding procedure was optimized, and a method using continuous feed of denatured product was developed. Thus the working concentration of trypsinogen could be raised four-fold, while the yield of active protein could be maintained at 20-35%. The refolded trypsinogen was converted to trypsin by autocatalytic activation, and the utility for the detachment of mammalian cells in culture was proven.  相似文献   
89.
In the denitrifying member of the beta-Proteobacteria Thauera aromatica, the anaerobic metabolism of aromatic acids such as benzoate or 2-aminobenzoate is initiated by the formation of the coenzyme A (CoA) thioester, benzoyl-CoA and 2-aminobenzoyl-CoA, respectively. Both aromatic substrates were transformed to the acyl-CoA intermediate by a single CoA ligase (AMP forming) that preferentially acted on benzoate. This benzoate-CoA ligase was purified and characterized as a 57-kDa monomeric protein. Based on V(max)/K(m), the specificity constant for 2-aminobenzoate was 15 times lower than that for benzoate; this may be the reason for the slower growth on 2-aminobenzoate. The benzoate-CoA ligase gene was cloned and sequenced and was found not to be part of the gene cluster encoding the general benzoyl-CoA pathway of anaerobic aromatic metabolism. Rather, it was located in a cluster of genes coding for a novel aerobic benzoate oxidation pathway. In line with this finding, the same CoA ligase was induced during aerobic growth with benzoate. A deletion mutant not only was unable to grow anaerobically on benzoate or 2-aminobenzoate, but also aerobic growth on benzoate was affected. This suggests that benzoate induces a single benzoate-CoA ligase. The product of benzoate activation, benzoyl-CoA, then acts as inducer of separate anaerobic or aerobic pathways of benzoyl-CoA, depending on whether oxygen is lacking or present.  相似文献   
90.
Using a cytological assay to monitor the successive chromatin association of replication proteins leading to replication initiation, we have investigated the function of fission yeast Cdc23/Mcm10 in DNA replication. Inactivation of Cdc23 before replication initiation using tight degron mutations has no effect on Mcm2 chromatin association, and thus pre-replicative complex (pre-RC) formation, although Cdc45 chromatin binding is blocked. Inactivating Cdc23 during an S phase block after Cdc45 has bound causes a small reduction in Cdc45 chromatin binding, and replication does not terminate in the absence of Mcm10 function. These observations show that Cdc23/Mcm10 function is conserved between fission yeast and Xenopus, where in vitro analysis has indicated a similar requirement for Cdc45 binding, but apparently not compared with Saccharomyces cerevisiae, where Mcm10 is needed for Mcm2 chromatin binding. However, unlike the situation in Xenopus, where Mcm10 chromatin binding is dependent on Mcm2-7, we show that the fission yeast protein is bound to chromatin throughout the cell cycle in growing cells, and only displaced from chromatin during quiescence. On return to growth, Cdc23 chromatin binding is rapidly reestablished independently from pre-RC formation, suggesting that chromatin association of Cdc23 provides a link between proliferation and competence to execute DNA replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号