首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
  52篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2002年   4篇
  2000年   2篇
  1995年   1篇
  1994年   1篇
  1983年   1篇
  1980年   1篇
  1977年   2篇
排序方式: 共有52条查询结果,搜索用时 3 毫秒
31.
Superoxide dismutases (SODs) are metalloenzymes that belong to the essential antioxidant enzyme systems of virtually all oxygen-respiring organisms. SODs catalyze the dismutation of highly reactive superoxide radicals into hydrogen peroxide and molecular oxygen. For the subcellular localization of the manganese superoxide dismutase (SOD2) in eukaryotic cells, a dual mitochondrial localization and peroxisomal localization were proposed in the literature. However, our own observation from immunofluorescence preparations of human and mouse tissues suggested that SOD2 serves as an excellent marker protein for mitochondria but never co-localized with peroxisomes. To clarify whether our observations were correct, we have carefully reinvestigated the subcellular localization of SOD2 using sensitive double-immunofluorescence methods on frozen and paraffin sections as well as in cell culture preparations. In addition, ultrastructural analyses were performed with post-embedding immunoelectron microscopy on LR White sections as well as labeling of ultrathin cryosections with various immunogold techniques. In all morphological experiments, the SOD2 localization was compared to one of the catalase, a typical marker protein for peroxisomes, solely localized in these organelles. Moreover, biochemical subcellular fractions of mouse liver was used to isolate enriched organelles and highly purified peroxisomal fractions for Western blot analyses of the exact subcellular distributions of SOD2 and catalase. All results with the various methodologies, tissues, and cell types used revealed that catalase and SOD2 were always confined to distinct and separate subcellular compartments. SOD2 was unequivocally in mitochondria, but never present in peroxisomes. Furthermore, our results are supported by accumulating database information on organelle proteomes that also indicate that SOD2 is a pure mitochondrial protein.  相似文献   
32.

Background  

The tolerability and efficacy of single dose albendazole (400 mg), diethylcarbamazine citrate (DEC) (6 mg/kg bodyweight) or co-administration of albendazole (400 mg) + DEC (6 mg/kg bodyweight) was studied in 54 asymptomatic Wuchereria bancrofti microfilaraemic volunteers in a double blind hospital-based clinical study.  相似文献   
33.
34.
P elements are widely used as insertional mutagens to tag genes, facilitating molecular cloning and analyses. We modified a P element so that it carried two copies of the suppressor of Hairy-wing [su(Hw)] binding regions isolated from the gypsy transposable element. This transposon was mobilized, and the genetic consequences of its insertion were analyzed. Gene expression can be altered by the su(Hw) protein as a result of blocking the interaction between enhancer/silencer elements and their promoter. These effects can occur over long distances and are general. Therefore, a composite transposon (SUPor-P for suppressor-P element) combines the mutagenic efficacy of the gypsy element with the controllable transposition of P elements. We show that, compared to standard P elements, this composite transposon causes an expanded repertoire of mutations and produces alleles that are suppressed by su(Hw) mutations. The large number of heterochromatic insertions obtained is unusual compared to other insertional mutagenesis procedures, indicating that the SUPor-P transposon may be useful for studying the structural and functional properties of heterochromatin.  相似文献   
35.
36.
37.
38.
39.
Peroxisomes are intimately involved in the metabolism of reactive oxygen species, in the synthesis of ether lipids and of polyunsaturated fatty acids as well as in the β-oxidation of bioactive and toxic lipid derivatives. Therefore, the metabolic pathways of this organelle might play an important role in pulmonary biology by protection of inner pulmonary surface epithelia against oxidative stress, induced by the high oxygen levels in the air and/or by regulation of the lipid homeostasis in pulmonary epithelia and the pulmonary surfactant film. In this article, original results on the distribution of peroxisomal marker proteins, involved in the biogenesis, ROS- and lipid-metabolism of this organelle in the bronchiolar epithelium and the alveolar region of the adult human lung in comparison to newborn and adult murine lungs are presented. In addition, we investigated the expression of the PEX11β-mRNA, encoding a protein involved in peroxisomal division. Our study revealed significant differences in the abundance and distribution of peroxisomal proteins in distinct cell types of the lung and different developmental stages and led to the discovery of species-specific differences in the peroxisomal compartment in pulmonary epithelia between mouse and man. Finally, the structure and general biology of pulmonary airways—with special emphasis on Clara cells—are reviewed and discussed in relation to peroxisomal metabolism and proliferation. Future prospects of peroxisomes and Pex11 proteins for pulmonary cell biology are highlighted. Presented at the 50th anniversary symposium of the Society for Histochemistry, Interlaken, Switzerland, October 1–4, 2008.  相似文献   
40.
The complexes [Cu(II)(phen)(L-Pro)(H2O)]+ ClO4(-) (1; phen = 1,10-phenanthroline) and [Cu(II)(bipy)(L-Pro)(H2O)]+ ClO4(-) (2; bipy = 2,2'-bipyridine) were synthesized and characterized by IR, magnetic susceptibility, UV/VIS, EPR, ESI-MS, elemental analysis, and theoretical calculations. The metal center was found in a square-pyramidal geometry. UV/VIS, thermal-denaturation, and fluorescence-spectroscopic studies were conducted to assess the interaction of the complexes with CT-DNA. An intercalative mode of binding was found, with intrinsic binding constants (Kb) of 3.86x10(3) and 4.6x10(3) M(-1) and Stern-Volmer quenching constants (K) of 0.15 and 0.11 for 1 and 2, respectively. Interestingly, none of the Cu(II) complexes was able to cleave pUC-19 DNA, which is attributed to the absence of a Pro amide H-atom and inhibition of the formation of an OH radical from the axially coordinated H2O molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号