首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   117篇
  1565篇
  2021年   17篇
  2020年   10篇
  2019年   13篇
  2018年   15篇
  2017年   18篇
  2016年   26篇
  2015年   40篇
  2014年   40篇
  2013年   58篇
  2012年   78篇
  2011年   65篇
  2010年   42篇
  2009年   56篇
  2008年   68篇
  2007年   65篇
  2006年   55篇
  2005年   58篇
  2004年   68篇
  2003年   66篇
  2002年   59篇
  2001年   56篇
  2000年   63篇
  1999年   43篇
  1998年   28篇
  1997年   16篇
  1996年   26篇
  1995年   12篇
  1994年   14篇
  1993年   26篇
  1992年   20篇
  1991年   15篇
  1990年   24篇
  1989年   20篇
  1988年   25篇
  1987年   19篇
  1986年   14篇
  1985年   20篇
  1984年   14篇
  1983年   15篇
  1982年   14篇
  1980年   11篇
  1979年   12篇
  1978年   14篇
  1976年   9篇
  1975年   11篇
  1974年   18篇
  1973年   10篇
  1972年   17篇
  1971年   12篇
  1966年   7篇
排序方式: 共有1565条查询结果,搜索用时 0 毫秒
41.
Archaea are ubiquitous in forest soils, but little is known about the factors regulating their abundance and distribution. Low molecular weight organic compounds represent an important energy source for archaea in marine environments, and it is reasonable to suspect that archaeal abundance is dependent on such compounds in soils as well, represented by, for example, plant and fungal exudates. To test this hypothesis, we designed a microcosm experiment in which we grew ponderosa pine, sitka spruce, and western hemlock in forest soil. Root and mycorrhizal exudation rates were estimated in a 13C pulse-chase experiment, and the number of archaeal and bacterial 16S rRNA genes was determined by qPCR. Archaeal abundance differed among plant species, and the number of archaeal 16S rRNA genes was generally lower in soil receiving high concentration of exudates. The mycorrhizal fungi of ponderosa pine seemed to favor archaea, while no such effect was found for mycorrhized sitka spruce or western hemlock. The low abundance of archaea in the proximity of roots and mycorrhiza may be a result of slow growth rates and poor competitive ability of archaea vs. bacteria and does not necessarily reflect a lack of heterotrophic abilities of the archaeal community.  相似文献   
42.
Escherichia coli TolA is a cytoplasmic membrane protein required for outer membrane integrity and the translocation of F-specific filamentous (Ff) bacteriophage DNA. Both phage infection and membrane integrity depend on several TolA interactions, e.g. those of the TolA C-terminal domain (TolAIII). Membrane integrity involves interaction with two host proteins and phage translocation requires direct interaction with the N-terminal domain (N1) of Ff phage protein g3p. Although cocrystallization of TolAIII and N1g3p has identified several contact points, it is still uncertain which residues are selectively involved in the different TolA functions. Thus, four different limited substitution libraries of TolA were created, targeting contacts at positions 415-420. These libraries were introduced into the tolA strain K17DE3tolA/F(+) and several variants, containing complementing, multiple amino-acid substitutions, were identified. However, most randomized variants did not complement the tolA strain K17DE3tolA/F(+). The TolA variants that restored sensitivity to phage infection displayed a considerable sequence variation, while the few variants that restored tolerance to detergent were from the same library. A comparison of the generated residue variation and natural variation, suggests that structural dependence overrides contact residue dependence. Thus, library screening can be efficient in identifying TolA variants with different functionally associated characteristics.  相似文献   
43.

Background

The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and overexpressed in breast cancer, associated with a poor outcome and divergent endocrine treatment benefit. S6K1 and S6K2 share high sequence homology, but evidence of partly distinct biological functions is emerging. The aim of this work was to explore possible different roles and treatment target potentials of S6K1 and S6K2 in breast cancer.

Materials and methods

Whole-genome expression profiles were compared for breast tumours expressing high levels of S6K1, S6K2 or 4EBP1, using public datasets, as well as after in vitro siRNA downregulation of S6K1 and/or S6K2 in ZR751 breast cancer cells. In silico homology modelling of the S6K2 kinase domain was used to evaluate its possible structural divergences to S6K1.

Results

Genome expression profiles were highly different in S6K1 and S6K2 high tumours, whereas S6K2 and 4EBP1 profiles showed significant overlaps, both correlated to genes involved in cell cycle progression, among these the master regulator E2F1. S6K2 and 4EBP1 were inversely associated with IGF1 levels, and their prognostic value was shown to be restricted to tumours positive for IGFR and/or HER2. In vitro, S6K1 and S6K2 silencing resulted in upregulation of genes in the mTORC1 and mTORC2 complexes. Isoform-specific silencing also showed distinct patterns, e.g. S6K2 downregulation lead to upregulation of several cell cycle associated genes. Structural analyses of the S6K2 kinase domain showed unique structure patterns, deviating from those of S6K1, facilitating the development of isoform-specific inhibitors. Our data support emerging proposals of distinct biological features of S6K1 and S6K2, suggesting their importance as separate oncogenes and clinical markers, where specific targeting in different breast cancer subtypes could facilitate further individualised therapies.  相似文献   
44.
Fungal chitinases are hydrolytic enzymes responsible for degradation of chitin. Chitinases are involved in several aspects of fungal biology, including cell wall remodelling during hyphal growth, conidial germination, autolysis, mycoparasitism and nutrient acquisition. They are divided into three distinct phylogenetic groups; A, B and C. Chitinases from the C group show structural similarities with the killer toxin zymocin produced by the yeast Kluyveromyces lactis and it is speculated that they have a similar function in filamentous ascomycetes, by facilitating penetration of toxins into cells of competing individuals. Genome analyses show that certain fungal species with a mycoparasitic lifestyle contain high numbers of killer toxin-like chitinases, compared with specialized saprotrophs and plant pathogens. Recent developments within this research field have revealed considerable variation in the modular structure and regulation of killer toxin-like chitinases, suggesting more diverse roles than merely fungal-fungal interactions. In this review, we summarize the current knowledge about this intriguing class of chitinases, including their modular structure, evolution, gene regulation, and functional analyses in mycoparasitic as well as in saprotrophic species. We also propose important questions for future research.  相似文献   
45.
Clinical mass spectrometry in neuroscience. Proteomics and peptidomics.   总被引:2,自引:0,他引:2  
In this review we discuss the merits and drawbacks with the use of proteomic and peptidomic strategies for identification of proteins and peptides in their multidimensional interactions in complex biological processes. The progress in proteomics and peptidomics during the last years offer us new challenges to study changes in the protein and peptide synthesis. These strategies also offer new tools to follow post-translational modifications and other disturbed chemical processes that may be indicative of pathophysiological alteration(s). Furthermore these techniques can contribute to improvements in the diagnosis and therapy of neurodegenerative diseases, such as Alzheimer's disease, and psychiatric diseases, as depression and post traumatic stress disorders. We also consider different practical aspects of the applications of mass spectrometry in clinical neuroscience, illustrated by example from our laboratories. The new proteomic and peptidomic strategies will further enable the progress for clinical neuroscience research.  相似文献   
46.
Caveolae are noncoated invaginations of the plasma membrane that form in the presence of the protein caveolin. Caveolae are found in most cells, but are especially abundant in adipocytes. By high-resolution electron microscopy of plasma membrane sheets the detailed structure of individual caveolae of primary rat adipocytes was examined. Caveolin-1 and -2 binding was restricted to the membrane proximal region, such as the ducts or necks attaching the caveolar bulb to the membrane. This was confirmed by transfection with myc-tagged caveolin-1 and -2. Essentially the same results were obtained with human fibroblasts. Hence caveolin does not form the caveolar bulb in these cells, but rather the neck and may thus act to retain the caveolar constituents, indicating how caveolin participates in the formation of caveolae. Caveolae, randomly distributed over the plasma membrane, were very heterogeneous, varying in size between 25 and 150 nm. There was about one million caveolae in an adipocyte, which increased the surface area of the plasma membrane by 50%. Half of the caveolae, those larger than 50 nm, had access to the outside of the cell via ducts and 20-nm orifices at the cell surface. The rest of the caveolae, those smaller than 50 nm, were not open to the cell exterior. Cholesterol depletion destroyed both caveolae and the cell surface orifices.  相似文献   
47.
Summary Reports on malodour in buildings constructed in the late 1970s gave rise to thorough investigations on the possible role of vapours of chemical compounds emitted by building materials. The odour could be related to the use of casein as an additive to improve the fluidity of concrete materials used as a self-levelling floor topping compound. Casein was suggested to be degraded by microorganisms, resulting in an accumulation of malodorous substances in the topping compounds.Bacteria isolated from biodeteriorated concrete materials containing caseins exhibited unusual tolerance towards high pH. Two dominant species were found among a total of 80 sporeforming, anaerobic isolates from concrete and raw products of caseins, namely Clostridium bifermentans and Clostridium sporogenes. C. bifermentans had a maximal pH tolerance of 12.2 while C. sporogenes could reproduce up to pH 11.7. The study includes the identification of the clostridia with API multitest as well as an investigation of the volatile organic acid and monoamine patterns. About 100 cfu clostridia/g material could be obtained during the isolation procedures.  相似文献   
48.
A gene encoding a lipolytic enzyme amplified from the alkaliphilic bacterium Bacillus halodurans LBB2 was cloned into the pPICZαB vector and integrated into the genome of the protease deficient yeast strain Pichia pastoris SMD1168H. This previously undescribed enzyme was produced in active form, and cloning in frame with the Saccharomyces cerevisiae secretion signal (α-factor) enabled extracellular accumulation of correctly processed enzyme, with an apparent molecular mass of 30 kDa. In shake-flask cultivations, very low production levels were obtained, but these were significantly improved by use of a “batch-induced” cultivation technique which allowed a maximum enzyme activity of 14,000 U/l using p-nitrophenyl butyrate (C-4) as a substrate and a final extracellular lipolytic enzyme concentration of approximately 0.2 g/l. Partial characterization of the produced enzyme (at pH 9) revealed a preference for the short-chain ester (C-4) and significant but lower activity towards medium (C5-C6) and long (C16 and C18) fatty acid chain-length esters. In addition, the enzyme exhibited true lipase activity (7,300 U/l) using olive oil as substrate and significant levels of phospholipase activity (6,400 U/l) by use of a phosphatidylcholine substrate, but no lysophospholipase activity was detected using a lysophosphatidylcholine substrate.  相似文献   
49.
The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method.  相似文献   
50.
N-Glycosylation is an important post-translational modification of proteins, which mainly occurs in the endoplasmic reticulum (ER). Glycoproteins that are unable to fold properly are exported to the cytosol for degradation by a cellular system called ER-associated degradation (ERAD). Once misfolded glycoproteins are exported to the cytosol, they are subjected to deglycosylation by peptide:N-glycanase (PNGase) to facilitate the efficient degradation of misfolded proteins by the proteasome. Interestingly, the ortholog of PNGase in some filamentous fungi was found to be an inactive deglycosylating enzyme. On the other hand, it has been shown that in filamentous fungi genomes, usually two different fungi-specific endo-β-N-acetylglucosamidases (ENGases) can be found; one is predicted to be localized in the cytosol and the other to have a signal sequence, while the functional importance of these enzymes remains to be clarified. In this study the ENGases of the filamentous fungus Trichoderma atroviride was characterized. By heterologous expression of the ENGases Eng18A and Eng18B in Saccharomyces cerevisiae, it was found that both ENGases are active deglycosylating enzymes. Interestingly, only Eng18B was able to enhance the efficient degradation of the RTL protein, a PNGase-dependent ERAD substrate, implying the involvement of this enzyme in the ERAD process. These results indicate that T. atroviride Eng18B may deglycosylate misfolded glycoproteins, substituting the function of the cytoplasmic PNGase in the ERAD process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号