全文获取类型
收费全文 | 110篇 |
免费 | 2篇 |
专业分类
112篇 |
出版年
2021年 | 1篇 |
2016年 | 3篇 |
2014年 | 1篇 |
2013年 | 1篇 |
2012年 | 3篇 |
2011年 | 1篇 |
2009年 | 1篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 3篇 |
2005年 | 6篇 |
2004年 | 9篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 7篇 |
2000年 | 8篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 6篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1990年 | 6篇 |
1989年 | 5篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 4篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Mukhran Khundadze Katrin Kollmann Nicole Koch Christoph Biskup Sandor Nietzsche Geraldine Zimmer J. Christopher Hennings Antje K. Huebner Judit Symmank Amir Jahic Elena I. Ilina Kathrin Karle Ludger Sch?ls Michael Kessels Thomas Braulke Britta Qualmann Ingo Kurth Christian Beetz Christian A. Hübner 《PLoS genetics》2013,9(12)
Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells. 相似文献
2.
D Ranganathan S Kurur A C Kunwar A V Sarma M Vairamani I L Karle 《The journal of peptide research》2000,56(6):416-426
The design, synthesis, characterization and self-assembling properties of a new class of amphiphilic peptides, constructed from a bifunctional polar core attached to totally hydrophobic arms, are presented. The first series of this class, represented by the general structure Py(Aibn)2 (Py=2,6-pyridine dicarbonyl unit; Aib=alpha, alpha'-dimethyl glycine; n=1-4), is prepared in a single step by the condensation of commercially available 2,6-pyridine dicarbonyl dichloride with the methyl ester of homo oligoAib peptide (Aibn-OMe) in the presence of triethyl amine. 1H NMR VT and ROESY studies indicated the presence of a common structural feature of 2-fold symmetry and an NH...N hydrogen bond for all the members. Whereas the Aib3 segment in Py(Aib3)2 showed only the onset of a 3(10)-helical structure, the presence of a well-formed 3(10)-helix in both Aib4 arms of Py(Aib4)2 was evident in the 1H NMR of the bispeptide. X-ray crystallographic studies have shown that in the solid state, whereas Py(Aib2)2 molecules organize into a sheet-like structure and Py(Aib3)2 molecules form a double-stranded string assembly, the tetra Aib bispeptide, Py(Aib4)2, is organized to form a tetrameric assembly which in turn extends into a continuous channel-like structure. The channel is totally hydrophobic in the interior and can selectively encapsulate lipophilic ester (CH3COOR, R=C2H5, C5H11) molecules, as shown by the crystal structures of the encapsulating channel. The crystal structure parameters are: 1b, Py(Aib2)2, C25H37N5O8, sp. gr. P2(1)2(1)2(1), a=9.170(1) A, b=16.215(2) A, c=20.091(3) A, R=4.80; 1c, Py(Aib3)2, C33H51N7O10H2O, sp. gr. P1, a=11.040(1) A, b=12.367(1) A, c=16.959(1) A, alpha =102.41 degrees, beta =97.29 degrees, gamma =110.83 degrees, R1=6.94; 1 da, Py(Aib4)2.et ac, C41H65N9O12.1.5H2O.C4H8O2, sp. gr. P1, a=16.064(4) A, b=16.156 A, c=21.655(5) A, alpha =90.14(1)degrees, beta=101.38(2) degrees, gamma=97.07(1)degrees, Z=4, R1=9.03; 1db, Py(Aib4)2.amylac, C41H65N9O12.H2O.C7H14O2, P2(1)/c, a=16.890(1) A, b=17.523(1)A, c=20.411(1) A, beta=98.18 degrees, Z=4, R=11.1 (with disorder). 相似文献
3.
Effect of plasma concentrations of uridine on pyrimidine biosynthesis in cultured L1210 cells 总被引:3,自引:0,他引:3
The concentration of uridine in the media of cultured L1210 cells was maintained within the concentration range found in plasma (1 to 10 microM) to determine if such concentrations are sufficient to satisfy the pyrimidine requirements of a population of dividing cells and to determine if cells utilize de novo and/or salvage pathways when exposed to plasma concentrations of uridine. When cells were incubated in the presence of N-(phosphonacetyl)-L-aspartate to block de novo biosynthesis, plasma concentrations of uridine maintained normal cell growth. De novo pyrimidine biosynthesis, as determined by [14C]sodium bicarbonate incorporation into uracil nucleotides, was affected by the low concentrations of uridine found in the plasma. Below 1 microM uridine, de novo biosynthesis was not affected; between 3 and 5 microM uridine, de novo biosynthesis was inhibited by approximately 50%; and above 12 microM uridine, de novo biosynthesis was inhibited by greater than 95%. Inhibition of de novo biosynthesis correlated with an increase in the uracil nucleotide pool. The de novo pathway was much more sensitive to the uracil nucleotide pool size than was the salvage pathway, such that when de novo biosynthesis was inhibited by greater than 95% the uracil nucleotide pool continued to expand and the cells continued to take up [14C]uridine. Thus, the pyrimidine requirements of cultured L1210 cells can be met by concentrations of uridine found in the plasma and, when exposed to such physiologic concentrations, L1210 cells decrease their dependency on de novo biosynthesis and utilize their salvage pathway. Circulating uridine, therefore, may be of physiologic importance and could be an important determinant in anti-pyrimidine chemotherapy. 相似文献
4.
Secukinumab is a human monoclonal antibody that selectively targets interleukin-17A and has been demonstrated to be highly efficacious in the treatment of moderate to severe plaque psoriasis, starting at early time points, with a sustained effect and a favorable safety profile. Biotherapeutics—including monoclonal antibodies (mAbs)—can be immunogenic, leading to formation of anti-drug antibodies (ADAs) that can result in unwanted effects, including hypersensitivity reactions or compromised therapeutic efficacy. To gain insight into possible explanations for the clinically observed low immunogenicity of secukinumab, we evaluated its immunogenicity potential by applying 2 different in vitro assays: T-cell activation and major histocompatibility complex–associated peptide proteomics (MAPPs). For both assays, monocyte-derived dendritic cells (DCs) from healthy donors were exposed in vitro to biotherapeutic proteins. DCs naturally process proteins and present the derived peptides in the context of human leukocyte antigen (HLA)-class II. HLA-DR–associated biotherapeutic-derived peptides, representing potential T–cell epitopes, were identified in the MAPPs assay. In the T-cell assay, autologous CD4+ T cells were co-cultured with secukinumab-exposed DCs and T-cell activation was measured by proliferation and interleukin-2 secretion. In the MAPPs analysis and T-cell activation assays, secukinumab consistently showed relatively low numbers of potential T-cell epitopes and low T-cell response rates, respectively, comparable to other biotherapeutics with known low clinical immunogenicity. In contrast, biotherapeutics with elevated clinical immunogenicity rates showed increased numbers of potential T-cell epitopes and increased T-cell response rates in T-cell activation assays, indicating an approximate correlation between in vitro assay results and clinical immunogenicity incidence. 相似文献
5.
6.
Zhang W Zitron E Hömme M Kihm L Morath C Scherer D Hegge S Thomas D Schmitt CP Zeier M Katus H Karle C Schwenger V 《The Journal of biological chemistry》2007,282(29):20933-20940
Aquaporin-1 (AQP1) channels contribute to osmotically induced water transport in several organs including the kidney and serosal membranes such as the peritoneum and the pleura. In addition, AQP1 channels have been shown to conduct cationic currents upon stimulation by cyclic nucleotides. To date, the short term regulation of AQP1 function by other major intracellular signaling pathways has not been studied. In the present study, we therefore investigated the regulation of AQP1 by protein kinase C. AQP1 wild type channels were expressed in Xenopus oocytes. Water permeability was assessed by hypotonic challenges. Activation of protein kinase C (PKC) by 1-oleoyl-2-acetyl-sn-glycerol (OAG) induced a marked increase of AQP1-dependent water permeability. This regulation was abolished in mutated AQP1 channels lacking both consensus PKC phosphorylation sites Thr(157) and Thr(239) (termed AQP1 DeltaPKC). AQP1 cationic currents measured with double-electrode voltage clamp were markedly increased after pharmacological activation of PKC by either OAG or phorbol 12-myristate 13-acetate. Deletion of either Thr(157) or Thr(239) caused a marked attenuation of PKC-dependent current increases, and deletion of both phosphorylation sites in AQP1 DeltaPKC channels abolished the effect. In vitro phosphorylation studies with synthesized peptides corresponding to amino acids 154-168 and 236-250 revealed that both Thr(157) and Thr(239) are phosphorylated by PKC. Upon stimulation by cyclic nucleotides, AQP1 wild type currents exhibited a strong activation. This regulation was not affected after deletion of PKC phosphorylation sites in AQP1 DeltaPKC channels. In conclusion, this is the first study to show that PKC positively regulates both water permeability and ionic conductance of AQP1 channels. This new pathway of AQP1 regulation is independent of the previously described cyclic nucleotide pathway and may contribute to the PKC stimulation of AQP1-modulated processes such as endothelial permeability, angiogenesis, and urine concentration. 相似文献
7.
8.
Selenocysteine lyase activity was detected in crude extracts from a cysteine-requiring mutant ofEscherichia coli K-12. The level of activity was the same whether cells had been grown aerobically or anaerobically, with or without selenocysteine.
Selenocysteine lyase catalyzes the conversion of selenocysteine to alanine and elemental Se, a reaction that is followed by
a nonenzymatic reduction of the Se to hydrogen selenide. Both of these end products were identified in this study. With cysteine
as the substrate, alanine and H2S were formed, but only at levels 50% less than the products formed from selenocysteine. Selenocysteine lyase has been identified
in a number of mammals and bacteria; its presence in a cysK mutant ofE. coli K-12 suggests a common route whereby hydrogen selenide, derived from selenocysteine, can then be assimilated into selenoproteins. 相似文献
9.
Hypoxia-induced inhibition of whole cell membrane currents and ion transport of A549 cells 总被引:1,自引:0,他引:1
Karle C Gehrig T Wodopia R Höschele S Kreye VA Katus HA Bärtsch P Mairbäurl H 《American journal of physiology. Lung cellular and molecular physiology》2004,286(6):L1154-L1160
In excitable cells, hypoxia inhibits K channels, causes membrane depolarization, and initiates complex adaptive mechanisms. It is unclear whether K channels of alveolar epithelial cells reveal a similar response to hypoxia. A549 cells were exposed to hypoxia during whole cell patch-clamp measurements. Hypoxia reversibly inhibited a voltage-dependent outward current, consistent with a K current, because tetraethylamonium (TEA; 10 mM) abolished this effect; however, iberiotoxin (0.1 microM) does not. In normoxia, TEA and iberiotoxin inhibited whole cell current (-35%), whereas the K-channel inhibitors glibenclamide (1 microM), barium (1 mM), chromanol B293 (10 microM), and 4-aminopyridine (1 mM) were ineffective. (86)Rb uptake was measured to see whether K-channel modulation also affected transport activity. TEA, iberiotoxin, and 4-h hypoxia (1.5% O(2)) inhibited total (86)Rb uptake by 40, 20, and 35%, respectively. Increased extracellular K also inhibited (86)Rb uptake in a dose-dependent way. The K-channel opener 1-ethyl-2-benzimidazolinone (1 mM) increased (86)Rb uptake by 120% in normoxic and hypoxic cells by activation of Na-K pumps (+60%) and Na-K-2Cl cotransport (+170%). However, hypoxic transport inhibition was also seen in the presence of 1-ethyl-2-benzimidazolinone, TEA, and iberiotoxin. These results indicate that hypoxia, membrane depolarization, and K-channel inhibition decrease whole cell membrane currents and transport activity. It appears, therefore, that a hypoxia-induced change in membrane conductance and membrane potential might be a link between hypoxia and alveolar ion transport inhibition. 相似文献
10.
Identification and characterisation of a novel KCNQ1 mutation in a family with Romano-Ward syndrome 总被引:1,自引:0,他引:1
Zehelein J Thomas D Khalil M Wimmer AB Koenen M Licka M Wu K Kiehn J Brockmeier K Kreye VA Karle CA Katus HA Ulmer HE Schoels W 《Biochimica et biophysica acta》2004,1690(3):185-192
Romano-Ward syndrome (RWS), the autosomal dominant form of the congenital long QT syndrome, is characterised by prolongation of the cardiac repolarisation process associated with ventricular tachyarrhythmias of the torsades de pointes type. Genetic studies have identified mutations in six ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and the accessory protein Ankyrin-B gene, to be responsible for this disorder. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequence analysis have identified a KCNQ1 mutation in a family that were clinically conspicuous due to several syncopes and prolonged QTc intervals in the ECG. The mutant subunit was expressed and functionally characterised in the Xenopus oocyte expression system. A novel heterozygous missense mutation with a C to T transition at the first position of codon 343 (CCA) of the KCNQ1 gene was identified in three concerned family members (QTc intervals: 500, 510 and 530 ms, respectively). As a result, proline 343 localised within the highly conserved transmembrane segment S6 of the KCNQ1 channel is replaced by a serine. Co-expression of mutant (KCNQ1-P343S) and wild-type (KCNQ1) cRNA in Xenopus oocytes produced potassium currents reduced by approximately 92%, while IKs reconstitution experiments with a combination of KCNQ1 mutant, wild-type and KCNE1 subunits yielded currents reduced by approximately 60%. A novel mutation (P343S) identified in the KCNQ1 subunit gene of three members of a RWS family showed a dominant-negative effect on native IKs currents leading to prolongation of the heart repolarisation and possibly increases the risk of malign arrhythmias with sudden cardiac death. 相似文献