首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   133篇
  国内免费   1篇
  2023年   8篇
  2022年   33篇
  2021年   38篇
  2020年   29篇
  2019年   41篇
  2018年   45篇
  2017年   34篇
  2016年   36篇
  2015年   93篇
  2014年   78篇
  2013年   103篇
  2012年   121篇
  2011年   109篇
  2010年   39篇
  2009年   63篇
  2008年   68篇
  2007年   71篇
  2006年   76篇
  2005年   62篇
  2004年   61篇
  2003年   51篇
  2002年   43篇
  2001年   14篇
  2000年   22篇
  1999年   20篇
  1998年   11篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   10篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   11篇
  1985年   6篇
  1984年   5篇
  1983年   12篇
  1982年   5篇
  1981年   7篇
  1979年   4篇
  1978年   4篇
  1974年   3篇
  1973年   3篇
  1972年   6篇
  1971年   6篇
  1970年   3篇
  1969年   6篇
排序方式: 共有1535条查询结果,搜索用时 31 毫秒
151.
Signal peptidase, which removes signal peptides from preproteins, has a substrate specificity for small uncharged residues at -1 (P1) and small or larger aliphatic residues at the -3 (P3) position. Structures of the catalytic domain with a 5S-penem inhibitor and a lipopeptide inhibitor reveal candidate residues that make up the S1 and S3 pockets that bind the P1 and P3 specificity residues of the preprotein substrate. We have used site-directed mutagenesis, mass spectrometric analysis, and in vivo and in vitro activity assays as well as molecular modeling to examine the importance of the substrate pocket residues. Generally, we find that the S1 and S3 binding sites can tolerate changes that are expected to increase or decrease the size of the pocket without large effects on activity. One residue that contributes to the high fidelity of cleavage of signal peptidase is the Ile-144 residue. Changes of the Ile-144 residue to cysteine result in cleavage at multiple sites, as determined by mass spectrometry and Edman sequencing analysis. In addition, we find that signal peptidase is able to cleave after phenylalanine at the -1 residue in a double mutant in which both Ile-86 and Ile-144 were changed to an alanine. Also, alteration of the Ile-144 and Ile-86 residues to the corresponding residues found in the homologous Imp1 protease changes the specificity to promote cleavage following a -1 Asn residue. This work shows that Ile-144 and Ile-86 contribute to the signal peptidase substrate specificity and that Ile-144 is important for the accuracy of the cleavage reaction.  相似文献   
152.
The effects of deficiencies in the antioxidant nutrients, vitamin E and selenium, on the host response to gastrointestinal nematode infection are unknown. The aim of the study was to determine the effect of antioxidant deficiencies on nematode-induced alterations in intestinal function in mice. BALB/c mice were fed control diets or diets deficient in selenium or vitamin E and the response to a secondary challenge inoculation with Heligmosomoides polygyrus was determined. Egg and worm counts were assessed to determine host resistance. Sections of jejunum were mounted in Ussing chambers to measure changes in permeability, absorption, and secretion, or suspended in organ baths to determine smooth muscle contraction. Both selenium and vitamin E deficient diets reduced resistance to helminth infection. Vitamin E, but not selenium, deficiency prevented nematode-induced decreases in glucose absorption and hyper-contractility of smooth muscle. Thus, vitamin E status is an important factor in the physiological response to intestinal nematode infection and may contribute to antioxidant-dependent protective mechanisms in the small intestine.  相似文献   
153.
Albumin transcytosis, a determinant of transendothelial permeability, is mediated by the release of caveolae from the plasma membrane. We addressed the role of Src phosphorylation of the GTPase dynamin-2 in the mechanism of caveolae release and albumin transport. Studies were made in microvascular endothelial cells in which the uptake of cholera toxin subunit B, a marker of caveolae, and (125)I-albumin was used to assess caveolae-mediated endocytosis. Albumin binding to the 60-kDa cell surface albumin-binding protein, gp60, induced Src activation (phosphorylation on Tyr(416)) within 1 min and resulted in Src-dependent tyrosine phosphorylation of dynamin-2, which increased its association with caveolin-1, the caveolae scaffold protein. Expression of kinase-defective Src mutant interfered with the association between dynamin-2, which caveolin-1 and prevented the uptake of albumin. Expression of non-Src-phosphorylatable dynamin (Y231F/Y597F) resulted in reduced association with caveolin-1, and in contrast to WT-dynamin-2, the mutant failed to translocate to the caveolin-rich membrane fraction. The Y231F/Y597F dynamin-2 mutant expression also resulted in impaired albumin and cholera toxin subunit B uptake and reduced transendothelial albumin transport. Thus, Src-mediated phosphorylation of dynamin-2 is an essential requirement for scission of caveolae and the resultant transendothelial transport of albumin.  相似文献   
154.
Two variants of this Walker 256 tumor have been previously reported as Walker 256 A and variant AR. The variant A has more aggressive property than variant AR and can induce systemic effects such as anorexia, sodium and water retention, followed by weight loss and death. The mechanisms involved in enhancing tumor regression and progression in this model are still incompletely understood. In the present study, serum and spleen mononuclear cells and tumor cells from animals inoculated with variants A and AR, were isolated to investigate the TGF-beta, IL-12, IFN-gamma and TNF-alpha and relationship with anemia, weight of animals, weight of spleen, volume of tumor and osmotic fragility compared with controls inoculated with Ringer Lactate. Results demonstrate that the group inoculated with variant A, compared to variant AR, shows high levels of TGF-beta gene expression in both tumor tissue and spleen cells, no expression of IFN-gamma and a progressive and higher levels of IL-12 in tumor tissue without inflammatory infiltrate visualized by optical microscopy. These results suggest that the aggressively of variant A is relate to cytokine modulation, facilitating the growth and escape of tumor cells. Furthermore, IL-12 seems to be constitutively expressed in both tumor lineage A and AR.  相似文献   
155.
This paper investigates the commonalities in ethnoveterinary medicine used for horses between Trinidad (West Indies) and British Columbia (Canada). These research areas are part of a common market in pharmaceuticals and are both involved in the North American racing circuit. There has been very little research conducted on medicinal plants used for horses although their use is widespread. The data on ethnoveterinary medicines used for horses was obtained through key informant interviews with horse owners, trainers, breeders, jockeys, grooms and animal care specialists in two research areas: Trinidad and British Columbia (BC). A participatory validation workshop was held in BC. An extensive literature review and botanical identification of the plants was also done. In all, 20 plants were found to be used in treating racehorses in Trinidad and 97 in BC. Of these the most-evidently effective plants 19 of the plants used in Trinidad and 66 of those used in BC are described and evaluated in this paper. Aloe vera, Curcuma longaand Ricinus communisare used in both research areas. More research is needed in Trinidad to identify plants that respondents claimed were used in the past. Far more studies have been conducted on the temperate and Chinese medicinal plants used in BC and therefore these ethnoveterinary remedies reflect stronger evidence of efficacy.  相似文献   
156.
S-nitrosation of the metal binding protein, metallothionein (MT) appears to be a critical link in affecting endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO)-induced changes in cytoplasmic and nuclear labile zinc, respectively. Although low molecular weight S-nitrosothiols also appear to affect this signaling system, less is known about the ability of extracellular protein nitrosothiols to transnitrosate MT. Accordingly, we synthesized fluorescently labeled S-nitroso-albumin (SNO-albumin, a major protein S-nitrosothiol in plasma) and determined, via confocal microscopy in fixed tissue, that it is transported into cultured rat pulmonary vascular endothelial cells in a temperature sensitive fashion. The cells were transfected with an expression vector that encodes human MT-IIa cDNA sandwiched between enhanced cyan (donor) and yellow (acceptor) fluorescent proteins (FRET-MT) that can detect conformational changes in MT through fluorescence resonance energy transfer (FRET). SNO-albumin and the membrane-permeant low molecular weight S-nitroso-l-cysteine ethyl ester (l-SNCEE) caused a conformational change in FRET-MT as ascertained by full spectral laser scanning confocal microscopy in live rat pulmonary vascular endothelial cells, a result which is consistent with transnitrosation of the reporter molecule. Transnitrosation of FRET-MT by SNO-albumin, but not l-SNCEE, was sensitive to antisense oligonucleotide-mediated inhibition of the expression of cell surface protein disulfide isomerase (csPDI). These results extend the original observations of Ramachandran et al. (Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B. Proc Natl Acad Sci U S A 98: 9539-9544, 2001) and suggest that csPDI-mediated denitrosation helps to regulate the ability of the major plasma NO carrier (SNO-albumin) to transnitrosate endothelial cell molecular targets (e.g. MT).  相似文献   
157.
158.
Siderophores are biosynthetically produced and secreted by many bacteria, yeasts, fungi and plants, to scavenge for ferric iron (Fe3+). They are selective iron-chelators that have an extremely high affinity for binding this trivalent metal ion. The ferric ion is poorly soluble but it is the form of iron that is predominantly found in oxygenated environments. Siderophore uptake in bacteria has been extensively studied and over the last decade, detailed structural information for many of the proteins that are involved in their transport has become available. Specifically, numerous crystal structures for outer membrane siderophore transporters, as well as for soluble periplasmic siderophore-binding proteins, have been reported. Moreover, unique siderophore-binding proteins have recently been serendipitously discovered in humans, and the structures of some of their siderophore-complexes have been characterized. The binding pockets for different ferric-siderophores in these proteins have been described in great molecular detail. In addition to highlighting this structural information, in this review paper we will also briefly discuss the relevant chemical properties of iron, and provide a perspective on our current understanding of the human and bacterial iron uptake pathways. Potential clinical uses of siderophores will also be discussed. The emerging overall picture is that iron metabolism plays an extremely important role during bacterial infections. Because levels of free ferric iron in biological systems are always extremely low, there is serious competition for iron and for ferric-siderophores between pathogenic bacteria and the human or animal host.  相似文献   
159.
Data regarding tellurium (Te) toxicity are scarce. Studies on its metabolism, performed mainly in bacteria, underline a major role of reactive oxygen species (ROS). We investigated whether tellurite undergoes redox cycling leading to ROS formation and cancer cell death. The murine hepatocarcinoma Transplantable Liver Tumor (TLT) cells were challenged with tellurite either in the presence or in the absence of different compounds as N-acetylcysteine (NAC), 3-methyladenine, BAPTA-AM, and catalase. NAC inhibition of tellurite-mediated toxicity suggested a major role of oxidative stress. Tellurite also decreased both glutathione (GSH) and ATP content by 57 and 80%, respectively. In the presence of NAC however, the levels of such markers were almost fully restored. Tellurite-mediated ROS generation was assessed both by using the fluorescent, oxidation-sensitive probe dichlorodihydrofluorescein diacetate (DCHF-DA) and electron spin resonance (ESR) spectroscopy to detect hydroxyl radical formation. Cell death occurs by a caspase-independent mechanism, as shown by the lack of caspase-3 activity and no cleavage of poly(ADP-ribose)polymerase (PARP). The presence of γ-H2AX suggests tellurite-induced DNA strand breaking, NAC being unable to counteract it. Although the calcium chelator BAPTA-AM did show no effect, the rapid phosphorylation of eIF2α suggests that, in addition to oxidative stress, an endoplasmic reticulum (ER) stress may be involved in the mechanisms leading to cell death by tellurite.  相似文献   
160.
Heat shock proteins (HSPs), which are important for a number of different intracellular functions, are occasionally found on the surface of cells. The function of heat shock protein on the cell surface is not understood, although it has been shown to be greater in some tumor cells and some virally infected cells. Surface expression of both glycoprotein 96 (gp96) and Hsp70 occurs on tumor cells, and this expression correlates with natural killer cell killing of the cells. We examined the surface expression of gp96 and Hsp70 on human breast cell lines MCF7, MCF10A, AU565, and HS578, and in primary human mammary epithelial cells by immunofluorescence microscopy and flow cytometry. The nonmalignant cell lines HS578, MCF10A, and HMEC showed no surface expression of gp96, whereas malignant cell lines MCF7 and AU565 were positive for gp96 surface expression. All of the breast cell lines examined showed Hsp70 surface expression. These results also confirm previous studies, demonstrating that Hsp70 is on the plasma membrane of tumor cell lines. Given the involvement of heat shock proteins, gp96 and Hsp70, in innate and adaptive immunity, these observations may be important in the immune response to tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号