首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   91篇
  2023年   5篇
  2022年   24篇
  2021年   27篇
  2020年   20篇
  2019年   28篇
  2018年   28篇
  2017年   19篇
  2016年   26篇
  2015年   71篇
  2014年   46篇
  2013年   72篇
  2012年   90篇
  2011年   74篇
  2010年   25篇
  2009年   42篇
  2008年   50篇
  2007年   45篇
  2006年   54篇
  2005年   44篇
  2004年   44篇
  2003年   35篇
  2002年   31篇
  2001年   6篇
  2000年   3篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1994年   7篇
  1993年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
  1956年   1篇
  1935年   1篇
排序方式: 共有987条查询结果,搜索用时 687 毫秒
101.
FhuD is a periplasmic binding protein (PBP) that, under iron-limiting conditions, transports various hydroxamate-type siderophores from the outer membrane receptor (FhuA) to the inner membrane ATP-binding cassette transporter (FhuBC). Unlike many other PBPs, FhuD possesses two independently folded domains that are connected by an α-helix rather than two or three central β-strands. Crystal structures of FhuD with and without bound gallichrome have provided some insight into the mechanism of siderophore binding as well as suggested a potential mechanism for FhuD binding to FhuB. Since the α-helix connecting the two domains imposes greater rigidity on the structure relative to the β-strands in other ‘classical’ PBPs, these structures reveal no large conformational change upon binding a hydroxamate-type siderophore. Therefore, it is difficult to explain how the inner membrane transporter FhuB can distinguish between ferrichrome-bound and ferrichrome-free FhuD. In the current study, we have employed a 30 ns molecular dynamics simulation of FhuD with its bound siderophore removed to explore the dynamic behavior of FhuD in the substrate-free state. The MD simulation suggests that FhuD is somewhat dynamic with a C-terminal domain closure of 6° upon release of its siderophore. This relatively large motion suggests differences that would allow FhuB to distinguish between ferrichrome-bound and ferrichrome-free FhuD.  相似文献   
102.
Infection of mammalian cells with several positive-strand RNA viruses induces double-membraned vesicles whose cytosolic surfaces serve as platforms for viral RNA replication. Our recent publication (Jackson et al. PLoS Biol 2005; 3:861-71) chronicled several similarities between poliovirus-induced membranes and autophagosomes, including induced co-localization of GFP-LC3 and LAMP1. Occasionally, the cytosolic lumen of these structures also contains viral particles; this likely results from wrapping of cytosol, which can contain high viral concentrations late in infection, by newly formed double membranes. Interestingly, RNAi treatment to reduce LC3 or Atg12p concentrations reduced yields of extracellular virus even more than intracellular virus. It is often assumed that exit of non-enveloped viruses such as poliovirus requires cell lysis. However, we hypothesize that autophagosome-like double-membranes, which can become single-membraned upon maturation, provide a long-sought mechanism for the observed non-lytic release of cytoplasmic viruses and possibly other cytoplasmic material resistant to the environment of maturing autophagosomes.  相似文献   
103.
Cyclin-dependent kinases (CDKs) have been identified as potential targets for development of drugs, mainly against cancer. These studies generated a vast library of chemical inhibitors of CDKs, and some of these molecules can also inhibit kinases identified in the Plasmodium falciparum genome. Here we describe structural models for Protein Kinase 6 from P. falciparum (PfPK6) complexed with Roscovitine and Olomoucine. These models show clear structural evidence for differences observed in the inhibition, and may help designing inhibitors for PfPK6 generating new potential drugs against malaria. Figure Ribbon diagram of PfPK6 complexed with a roscovitine and b olomoucine  相似文献   
104.
Signal peptidase, which removes signal peptides from preproteins, has a substrate specificity for small uncharged residues at -1 (P1) and small or larger aliphatic residues at the -3 (P3) position. Structures of the catalytic domain with a 5S-penem inhibitor and a lipopeptide inhibitor reveal candidate residues that make up the S1 and S3 pockets that bind the P1 and P3 specificity residues of the preprotein substrate. We have used site-directed mutagenesis, mass spectrometric analysis, and in vivo and in vitro activity assays as well as molecular modeling to examine the importance of the substrate pocket residues. Generally, we find that the S1 and S3 binding sites can tolerate changes that are expected to increase or decrease the size of the pocket without large effects on activity. One residue that contributes to the high fidelity of cleavage of signal peptidase is the Ile-144 residue. Changes of the Ile-144 residue to cysteine result in cleavage at multiple sites, as determined by mass spectrometry and Edman sequencing analysis. In addition, we find that signal peptidase is able to cleave after phenylalanine at the -1 residue in a double mutant in which both Ile-86 and Ile-144 were changed to an alanine. Also, alteration of the Ile-144 and Ile-86 residues to the corresponding residues found in the homologous Imp1 protease changes the specificity to promote cleavage following a -1 Asn residue. This work shows that Ile-144 and Ile-86 contribute to the signal peptidase substrate specificity and that Ile-144 is important for the accuracy of the cleavage reaction.  相似文献   
105.
The effects of deficiencies in the antioxidant nutrients, vitamin E and selenium, on the host response to gastrointestinal nematode infection are unknown. The aim of the study was to determine the effect of antioxidant deficiencies on nematode-induced alterations in intestinal function in mice. BALB/c mice were fed control diets or diets deficient in selenium or vitamin E and the response to a secondary challenge inoculation with Heligmosomoides polygyrus was determined. Egg and worm counts were assessed to determine host resistance. Sections of jejunum were mounted in Ussing chambers to measure changes in permeability, absorption, and secretion, or suspended in organ baths to determine smooth muscle contraction. Both selenium and vitamin E deficient diets reduced resistance to helminth infection. Vitamin E, but not selenium, deficiency prevented nematode-induced decreases in glucose absorption and hyper-contractility of smooth muscle. Thus, vitamin E status is an important factor in the physiological response to intestinal nematode infection and may contribute to antioxidant-dependent protective mechanisms in the small intestine.  相似文献   
106.
Two variants of this Walker 256 tumor have been previously reported as Walker 256 A and variant AR. The variant A has more aggressive property than variant AR and can induce systemic effects such as anorexia, sodium and water retention, followed by weight loss and death. The mechanisms involved in enhancing tumor regression and progression in this model are still incompletely understood. In the present study, serum and spleen mononuclear cells and tumor cells from animals inoculated with variants A and AR, were isolated to investigate the TGF-beta, IL-12, IFN-gamma and TNF-alpha and relationship with anemia, weight of animals, weight of spleen, volume of tumor and osmotic fragility compared with controls inoculated with Ringer Lactate. Results demonstrate that the group inoculated with variant A, compared to variant AR, shows high levels of TGF-beta gene expression in both tumor tissue and spleen cells, no expression of IFN-gamma and a progressive and higher levels of IL-12 in tumor tissue without inflammatory infiltrate visualized by optical microscopy. These results suggest that the aggressively of variant A is relate to cytokine modulation, facilitating the growth and escape of tumor cells. Furthermore, IL-12 seems to be constitutively expressed in both tumor lineage A and AR.  相似文献   
107.
This paper investigates the commonalities in ethnoveterinary medicine used for horses between Trinidad (West Indies) and British Columbia (Canada). These research areas are part of a common market in pharmaceuticals and are both involved in the North American racing circuit. There has been very little research conducted on medicinal plants used for horses although their use is widespread. The data on ethnoveterinary medicines used for horses was obtained through key informant interviews with horse owners, trainers, breeders, jockeys, grooms and animal care specialists in two research areas: Trinidad and British Columbia (BC). A participatory validation workshop was held in BC. An extensive literature review and botanical identification of the plants was also done. In all, 20 plants were found to be used in treating racehorses in Trinidad and 97 in BC. Of these the most-evidently effective plants 19 of the plants used in Trinidad and 66 of those used in BC are described and evaluated in this paper. Aloe vera, Curcuma longaand Ricinus communisare used in both research areas. More research is needed in Trinidad to identify plants that respondents claimed were used in the past. Far more studies have been conducted on the temperate and Chinese medicinal plants used in BC and therefore these ethnoveterinary remedies reflect stronger evidence of efficacy.  相似文献   
108.
S-nitrosation of the metal binding protein, metallothionein (MT) appears to be a critical link in affecting endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO)-induced changes in cytoplasmic and nuclear labile zinc, respectively. Although low molecular weight S-nitrosothiols also appear to affect this signaling system, less is known about the ability of extracellular protein nitrosothiols to transnitrosate MT. Accordingly, we synthesized fluorescently labeled S-nitroso-albumin (SNO-albumin, a major protein S-nitrosothiol in plasma) and determined, via confocal microscopy in fixed tissue, that it is transported into cultured rat pulmonary vascular endothelial cells in a temperature sensitive fashion. The cells were transfected with an expression vector that encodes human MT-IIa cDNA sandwiched between enhanced cyan (donor) and yellow (acceptor) fluorescent proteins (FRET-MT) that can detect conformational changes in MT through fluorescence resonance energy transfer (FRET). SNO-albumin and the membrane-permeant low molecular weight S-nitroso-l-cysteine ethyl ester (l-SNCEE) caused a conformational change in FRET-MT as ascertained by full spectral laser scanning confocal microscopy in live rat pulmonary vascular endothelial cells, a result which is consistent with transnitrosation of the reporter molecule. Transnitrosation of FRET-MT by SNO-albumin, but not l-SNCEE, was sensitive to antisense oligonucleotide-mediated inhibition of the expression of cell surface protein disulfide isomerase (csPDI). These results extend the original observations of Ramachandran et al. (Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B. Proc Natl Acad Sci U S A 98: 9539-9544, 2001) and suggest that csPDI-mediated denitrosation helps to regulate the ability of the major plasma NO carrier (SNO-albumin) to transnitrosate endothelial cell molecular targets (e.g. MT).  相似文献   
109.
110.
Siderophores are biosynthetically produced and secreted by many bacteria, yeasts, fungi and plants, to scavenge for ferric iron (Fe3+). They are selective iron-chelators that have an extremely high affinity for binding this trivalent metal ion. The ferric ion is poorly soluble but it is the form of iron that is predominantly found in oxygenated environments. Siderophore uptake in bacteria has been extensively studied and over the last decade, detailed structural information for many of the proteins that are involved in their transport has become available. Specifically, numerous crystal structures for outer membrane siderophore transporters, as well as for soluble periplasmic siderophore-binding proteins, have been reported. Moreover, unique siderophore-binding proteins have recently been serendipitously discovered in humans, and the structures of some of their siderophore-complexes have been characterized. The binding pockets for different ferric-siderophores in these proteins have been described in great molecular detail. In addition to highlighting this structural information, in this review paper we will also briefly discuss the relevant chemical properties of iron, and provide a perspective on our current understanding of the human and bacterial iron uptake pathways. Potential clinical uses of siderophores will also be discussed. The emerging overall picture is that iron metabolism plays an extremely important role during bacterial infections. Because levels of free ferric iron in biological systems are always extremely low, there is serious competition for iron and for ferric-siderophores between pathogenic bacteria and the human or animal host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号