首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7238篇
  免费   525篇
  国内免费   3篇
  2022年   40篇
  2021年   88篇
  2020年   62篇
  2019年   76篇
  2018年   97篇
  2017年   93篇
  2016年   135篇
  2015年   226篇
  2014年   277篇
  2013年   350篇
  2012年   431篇
  2011年   420篇
  2010年   269篇
  2009年   267篇
  2008年   333篇
  2007年   381篇
  2006年   316篇
  2005年   298篇
  2004年   264篇
  2003年   294篇
  2002年   267篇
  2001年   51篇
  2000年   40篇
  1999年   71篇
  1998年   87篇
  1997年   61篇
  1996年   50篇
  1995年   69篇
  1994年   58篇
  1993年   60篇
  1992年   64篇
  1991年   69篇
  1990年   49篇
  1989年   49篇
  1988年   67篇
  1987年   54篇
  1986年   43篇
  1985年   67篇
  1984年   51篇
  1983年   55篇
  1982年   75篇
  1981年   70篇
  1980年   71篇
  1979年   51篇
  1978年   61篇
  1977年   45篇
  1976年   61篇
  1975年   40篇
  1974年   39篇
  1968年   35篇
排序方式: 共有7766条查询结果,搜索用时 15 毫秒
341.
342.
343.
A phytoremediation study targeting low-level total petroleum hydrocarbons (TPH) was conducted using cool- and warm-season grasses and willows (Salix species) grown in pots filled with contaminated sandy soil from the New Haven Rail Yard, CT. Efficiencies of the TPH degradation were assessed in a 90-day experiment using 20–8.7–16.6 N-P-K water-soluble fertilizer and fertilizer with molasses amendments to enhance phytoremediation. Plant biomass, TPH concentrations, and indigenous microbes quantified with colony-forming units (CFU), were assessed at the end of the study. Switchgrass grown with soil amendments produced the highest aboveground biomass. Bacterial CFU's were in orders of magnitude significantly higher in willows with soil amendments compared to vegetated treatments with no amendments. The greatest reduction in TPH occurred in all vegetated treatments with fertilizer (66–75%) and fertilizer/molasses (65–74%), followed sequentially by vegetated treatments without amendments, unvegetated treatments with amendments, and unvegetated treatments with no amendment. Phytoremediation of low-level TPH contamination was most efficient where fertilization was in combination with plant species. The same level of remediation was achievable through the addition of grasses and/or willow combinations without amendment, or by fertilization of sandy soil.  相似文献   
344.
345.
346.
BackgroundHuman platelet lysate (hPL) represents a powerful alternative to fetal bovine serum (FBS) for human mesenchymal stromal cell (hMSC) expansion. However, the large variability in hPL sources and production protocols gives rise to discrepancies in product quality, characterization and poor batch-to-batch standardization.MethodshPL prepared with more than 200 donors (200+DhPL) or with five donors (5DhPL) were compared in terms of growth factor (GF) contents and biochemical analysis. A multiple protein assay and proteomic analysis were performed to further characterize 200+DhPL batches. We also compared the phenotypic and functional characteristics of bone marrow (BM)-hMSCs grown in 200+DhPL versus FBS+basic fibroblast growth factor (bFGF).ResultsBy contrast to 5DhPL, industrial 200+DhPL displayed a strong standardization of GF contents and biochemical characteristics. We identified specific plasmatic components and platelet-released factors as the most relevant markers for the evaluation of the standardization of hPL batches. We used a multiplex assay and proteomic analysis of 200+DhPL to establish a proteomic signature and demonstrated the robust standardization of batches. 200+DhPL was shown to improve and standardize BM-hMSC expansion compared with FBS+bFGF. The levels of expression of BM-hMSC membrane markers were found to be much more homogeneous between batches when cells were cultured in 200+DhPL. BM-hMSCs cultured in parallel under both conditions displayed similar adipogenic and osteogenic differentiation potential and immunosuppressive properties.ConclusionsWe report a standardization of hPL and the importance of such standardization for the efficient amplification of more homogeneous and reproducible cell therapy products.  相似文献   
347.
348.
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.  相似文献   
349.
Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi‐chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division‐replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.  相似文献   
350.
IGF‐motif loops project from the hexameric ring of ClpX and are required for docking with the self‐compartmentalized ClpP peptidase, which consists of heptameric rings stacked back‐to‐back. Here, we show that ATP or ATPγS support assembly by changing the conformation of the ClpX ring, bringing the IGF loops closer to each other and allowing efficient multivalent contacts with docking clefts on ClpP. In single‐chain ClpX pseudohexamers, deletion of one or two IGF loops modestly slows association with ClpP but strongly accelerates dissociation of ClpXP complexes. We probe how changes in the sequence and length of the IGF loops affect ClpX–ClpP interactions and show that deletion of one or two IGF loops slows ATP‐dependent proteolysis by ClpXP. We also find that ClpXP degradation is less processive when two IGF loops are deleted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号