首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6907篇
  免费   506篇
  国内免费   5篇
  7418篇
  2022年   36篇
  2021年   85篇
  2020年   61篇
  2019年   73篇
  2018年   93篇
  2017年   89篇
  2016年   134篇
  2015年   222篇
  2014年   273篇
  2013年   334篇
  2012年   421篇
  2011年   406篇
  2010年   265篇
  2009年   263篇
  2008年   325篇
  2007年   375篇
  2006年   305篇
  2005年   290篇
  2004年   258篇
  2003年   285篇
  2002年   259篇
  2001年   50篇
  2000年   39篇
  1999年   71篇
  1998年   85篇
  1997年   59篇
  1996年   46篇
  1995年   66篇
  1994年   52篇
  1993年   56篇
  1992年   59篇
  1991年   59篇
  1990年   49篇
  1989年   46篇
  1988年   63篇
  1987年   52篇
  1986年   36篇
  1985年   62篇
  1984年   48篇
  1983年   53篇
  1982年   72篇
  1981年   62篇
  1980年   65篇
  1979年   48篇
  1978年   60篇
  1977年   43篇
  1976年   59篇
  1975年   39篇
  1974年   38篇
  1968年   33篇
排序方式: 共有7418条查询结果,搜索用时 0 毫秒
201.
202.
Mycoplasma suis cannot be cultivated in vitro. Therefore, PCR-based methods are irreplaceable for the diagnosis of M. suis infections especially when clinical symptoms are not evident. Currently, no easy and reliable method allowing the quantitative detection of M. suis is available. This report describes the development of a quantitative LightCycler PCR assay based on the msg1 gene of M. suis (LC MSG1 PCR). No PCR signals were obtained with closely related haemotrophic and non-haemotrophic mycoplasmas, with other bacteria, and with M. suis-free blood and tissue arguing for a high analytical specificity. Test sensitivity was found to be 100%, and test specificity 96.7%. To test the diagnostic suitability of the LC MSG1 PCR, 25 pigs with clinical porcine eperythrozoonosis and 25 healthy pigs were investigated. All ill pigs revealed a positive real-time PCR result whereas only one healthy pig was detected to be M. suis-infected. M. suis was quantitatively detected in 19 blood specimens of 100 sows from Switzerland and in 17 of 160 post-weaning piglets from Germany. In conclusion, this new LC MSG1 PCR assay represents a powerful tool for the improvement of the current M. suis diagnosis and for prevalence and pathogenesis studies.  相似文献   
203.
204.
Meaud J  Grosh K 《Biophysical journal》2011,(11):2576-2585
One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility.  相似文献   
205.
Chitinases (EC 3.2.1.14) are glycosyl hydrolases that catalyze the hydrolysis of beta-(1, 4)-glycosidic bonds in chitin, the major structural polysaccharide present in the cuticle and gut peritrophic matrix of insects. Two conserved regions have been identified from amino acid sequence comparisons of family 18 glycosyl hydrolases, which includes Manduca sexta (tobacco hornworm) chitinase as a member. The second of these regions in M. sexta chitinase contains three very highly conserved acidic amino acid residues, D142, D144 and E146, that are probably active site residues. In this study the functional roles of these three residues were investigated using site-directed mutagenesis for their substitutions to other amino acids. Six mutant proteins, D142E, D142N, D144E, D144N, E146D and E146Q, as well as the wild-type enzyme, were produced using a baculovirus-insect cell line expression system. The proteins were purified by anion-exchange chromatography, after which their physical, kinetic and substrate binding properties were determined. Circular dichroism spectra of the mutant proteins were similar to that of the wild-type protein, indicating that the presence of mutations did not change the overall secondary structures. E146 was required for enzymatic activity because mutants E146Q and E146D were devoid of activity. D144E retained most of the enzymatic activity, but D144N lost nearly 90%. There was a shift in the pH optimum from alkaline pH to acidic pH for mutants D142N and D144E with minimal losses of activity relative to the wild-type enzyme. The pH-activity profile for the D142E mutation resembled that of the wild-type enzyme except activity in the neutral and acidic range was lower. All of the mutant proteins bound to chitin. Therefore, none of these acidic residues was essential for substrate binding. The results indicate that E146 probably functions as an acid/base catalyst in the hydrolytic mechanism, as do homologous residues in other glycosyl hydrolases. D144 apparently functions as an electrostatic stabilizer of the positively charged transition state, whereas D142 probably influences the pKa values of D144 and E146.  相似文献   
206.
The ATPase ISWI is the catalytic core of several nucleosome remodeling complexes, which are able to alter histone–DNA interactions within nucleosomes such that the sliding of histone octamers on DNA is facilitated. Dynamic nucleosome repositioning may be involved in the assembly of chromatin with regularly spaced nucleosomes and accessible regulatory sequence elements. The mechanism that underlies nucleosome sliding is largely unresolved. We recently discovered that the N-terminal ‘tail’ of histone H4 is critical for nucleosome remodeling by ISWI. If deleted, nucleosomes are no longer recognized as substrates and do not stimulate the ATPase activity of ISWI. We show here that the H4 tail is part of a more complex recognition epitope which is destroyed by grafting the H4 N-terminus onto other histones. We mapped the H4 tail requirement to a hydrophilic patch consisting of the amino acids R17H18R19 localized at the base of the tail. These residues have been shown earlier to contact nucleosomal DNA, suggesting that ISWI recognizes an ‘epitope’ consisting of the DNA-bound H4 tail. Consistent with this hypothesis, the ISWI ATPase is stimulated by isolated H4 tail peptides ISWI only in the presence of DNA. Acetylation of the adjacent K12 and K16 residues impairs substrate recognition by ISWI.  相似文献   
207.
Increased breakdown of myocardial phospholipids to fatty acids and lysophosphoglycerides is an early feature of myocardial ischemic injury and many investigators believe that enhanced phospholipase action is an important factor in the process. Several recent reports indicate that inhibitors of phospholipase A, such as mepacrine, chloroquine and chlorpromazine, can prevent heart phosphoglyceride breakdown in vivo. We isolated the phospholipases A from rat heart cytosol and sarcoplasmic reticulum and examined the effects of various cardioprotective substances on their activity. Most of the cardioprotective agents studied inhibited the heart phospholipases in vitro, providing further evidence that phospholipid degradation in ischemic myocardial injury may be modulated by pharmacologic agents.  相似文献   
208.
Proteasome is a major protease of the ubiquitin-proteasome pathway involved in the regulation of practically all intracellular biochemical processes. The enzyme core is created by a heteromultimer of complex architecture built with multiple subunits arranged into a tube-like structure. The multiple active sites of diverse peptidase specificity are hidden inside the tube. Access to the interior is guarded by a gate formed by the N-termini of specialized subunits and by the attachment of additional multisubunit protein complexes controlling the enzymatic capabilities of the core. Proteasome, due to its Byzantine molecular architecture and equally sophisticated enzymatic mechanism, is by itself a fascinating biophysical object. Recently, the position of the protease advanced from an academically remarkable protein processor to a providential anticancer drug target and futuristic nanomachine. Proteomics studies actively shape our current understanding of the protease and direct the future applications of the proteasome in medicine.  相似文献   
209.
210.
Denitrification is an important net sink for NO3 ? in streams, but direct measurements are limited and in situ controlling factors are not well known. We measured denitrification at multiple scales over a range of flow conditions and NO3 ? concentrations in streams draining agricultural land in the upper Mississippi River basin. Comparisons of reach-scale measurements (in-stream mass transport and tracer tests) with local-scale in situ measurements (pore-water profiles, benthic chambers) and laboratory data (sediment core microcosms) gave evidence for heterogeneity in factors affecting benthic denitrification both temporally (e.g., seasonal variation in NO3 ? concentrations and loads, flood-related disruption and re-growth of benthic communities and organic deposits) and spatially (e.g., local stream morphology and sediment characteristics). When expressed as vertical denitrification flux per unit area of streambed (U denit, in μmol N m?2 h?1), results of different methods for a given set of conditions commonly were in agreement within a factor of 2–3. At approximately constant temperature (~20 ± 4°C) and with minimal benthic disturbance, our aggregated data indicated an overall positive relation between U denit (~0–4,000 μmol N m?2 h?1) and stream NO3 ? concentration (~20–1,100 μmol L?1) representing seasonal variation from spring high flow (high NO3 ?) to late summer low flow (low NO3 ?). The temporal dependence of U denit on NO3 ? was less than first-order and could be described about equally well with power-law or saturation equations (e.g., for the unweighted dataset, U denit ≈26 * [NO3 ?]0.44 or U denit ≈640 * [NO3 ?]/[180 + NO3 ?]; for a partially weighted dataset, U denit ≈14 * [NO3 ?]0.54 or U denit ≈700 * [NO3 ?]/[320 + NO3 ?]). Similar parameters were derived from a recent spatial comparison of stream denitrification extending to lower NO3 ? concentrations (LINX2), and from the combined dataset from both studies over 3 orders of magnitude in NO3 ? concentration. Hypothetical models based on our results illustrate: (1) U denit was inversely related to denitrification rate constant (k1denit, in day?1) and vertical transfer velocity (v f,denit, in m day?1) at seasonal and possibly event time scales; (2) although k1denit was relatively large at low flow (low NO3 ?), its impact on annual loads was relatively small because higher concentrations and loads at high flow were not fully compensated by increases in U denit; and (3) although NO3 ? assimilation and denitrification were linked through production of organic reactants, rates of NO3 ? loss by these processes may have been partially decoupled by changes in flow and sediment transport. Whereas k1denit and v f,denit are linked implicitly with stream depth, NO3 ? concentration, and(or) NO3 ? load, estimates of U denit may be related more directly to field factors (including NO3 ? concentration) affecting denitrification rates in benthic sediments. Regional regressions and simulations of benthic denitrification in stream networks might be improved by including a non-linear relation between U denit and stream NO3 ? concentration and accounting for temporal variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号