首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6973篇
  免费   506篇
  国内免费   5篇
  7484篇
  2022年   36篇
  2021年   85篇
  2020年   61篇
  2019年   73篇
  2018年   93篇
  2017年   89篇
  2016年   134篇
  2015年   222篇
  2014年   273篇
  2013年   334篇
  2012年   421篇
  2011年   406篇
  2010年   265篇
  2009年   263篇
  2008年   325篇
  2007年   375篇
  2006年   305篇
  2005年   290篇
  2004年   258篇
  2003年   285篇
  2002年   259篇
  2001年   50篇
  2000年   39篇
  1999年   71篇
  1998年   85篇
  1997年   59篇
  1996年   46篇
  1995年   66篇
  1994年   52篇
  1993年   56篇
  1992年   59篇
  1991年   59篇
  1990年   49篇
  1989年   46篇
  1988年   63篇
  1987年   52篇
  1986年   38篇
  1985年   64篇
  1984年   50篇
  1983年   63篇
  1982年   72篇
  1981年   65篇
  1980年   67篇
  1979年   53篇
  1978年   63篇
  1977年   44篇
  1976年   63篇
  1975年   40篇
  1974年   39篇
  1968年   34篇
排序方式: 共有7484条查询结果,搜索用时 15 毫秒
61.
Macrocyclization is a commonly used strategy to preorganize HCV NS3 protease inhibitors in their bioactive conformation. Moreover, macrocyclization generally leads to greater stability and improved pharmacokinetic properties. In HCV NS3 protease inhibitors, it has been shown to be beneficial to include a vinylated phenylglycine in the P2 position in combination with alkenylic P1' substituents. A series of 14-, 15- and 16-membered macrocyclic HCV NS3 protease inhibitors with the linker connecting the P2 phenylglycine and the alkenylic P1' were synthesized by ring-closing metathesis, using both microwave and conventional heating. Besides formation of the expected macrocycles in cis and trans configuration as major products, both ring-contracted and double-bond migrated isomers were obtained, in particular during formation of the smaller rings (14- and 15-membered rings). All inhibitors had K(i)-values in the nanomolar range, but only one inhibitor type was improved by rigidification. The loss in inhibitory effect can be attributed to a disruption of the beneficial π-π interaction between the P2 fragment and H57, which proved to be especially deleterious for the d-phenylglycine epimers.  相似文献   
62.
63.
64.
65.
66.
The simian virus 40 (SV40) genome is a model system frequently employed for investigating eukaryotic replication. Large T-antigen (T-ag) is a viral protein responsible for unwinding the SV40 genome and recruiting necessary host factors prior to replication. In addition to duplex unwinding T-ag possesses G-quadruplex DNA helicase activity, the physiological consequence of which is unclear. However, formation of G-quadruplex DNA structures may be involved in genome maintenance and function, and helicase activity to resolve these structures may be necessary for efficient replication. We report the first real-time investigation of SV40 T-ag helicase activity using surface plasmon resonance (SPR). In the presence of ATP, T-ag was observed to bind to immobilized single-stranded DNA, forked duplex DNA, and the human telomeric foldover quadruplex DNA sequence. Inhibition of T-ag duplex helicase activity was observable in real-time and the intramolecular quadruplex was unwound.
Wendi M. DavidEmail:
  相似文献   
67.
Recombinant proteins are essential products of today's industrial biotechnology. In this study we address two crucial factors in recombinant protein production: (i) product accessibility and (ii) product recovery. Escherichia coli, one of the most frequently used hosts for recombinant protein expression, does not inherently secrete proteins into the extracellular environment. The major drawback of this expression system is, therefore, to be found in the intracellular protein accumulation and hampered product accessibility. We have constructed a set of expression vectors in order to facilitate extracellular protein production and purification. The maltose binding protein from E. coli is used as fusion partner for several proteins of interest allowing an export to the bacteria's periplasm via both the Sec and the Tat pathway. Upon coexpression of a modified Cloacin DF13 bacteriocin release protein, the hybrid proteins are released into the culture medium. This essentially applies to a distinguished reporter molecule, the green fluorescent protein, for which an extracellular production was not reported so far. The sequestered proteins can be purified to approximate homogeneity by a simple, rapid and cheap procedure which utilizes the affinity of the maltose binding protein to α-1,4-glucans.  相似文献   
68.
69.
Different concentrations of a sucrose solution vary the courtship song and behaviour of the male yellow-bellied sunbird Nectarinia venusta- the duration of subsong, total singing duration, and the absolute number of full song phrases. With high concentrations the sunbird sings more full song phrases but less subsong during the courtship season than otherwise. The various effects are described.  相似文献   
70.
Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome.In-depth characterization and quantitation of protein isoforms, including post-translationally modified proteins, are challenging goals of contemporary proteomics. Traditionally, top-down (1, 2) and bottom-up (3, 4) proteomics have been two distinct analytical paths for liquid-based proteomics analysis. Top-down proteomics is the mass spectrometry (MS)-based characterization of intact proteins, whereas bottom-up proteomics requires a chemical or enzymatic proteolytic digestion of all proteins into peptides prior to MS analysis. Both strategies have their own strengths and challenges and can be thought of as complementary rather than competing analytical techniques.In a top-down proteomics approach, proteins are usually separated by one- or two-dimensional liquid chromatography (LC) and identified using high performance MS (5, 6). This approach is very attractive because it allows the identification of protein isoforms arising from various amino acid modifications, genetic variants (e.g. single nucleotide polymorphisms), mRNA splice variants, and multisite modifications (7) (e.g. specific histone modifications) as well as characterization of proteolytic processing events. However, there are several challenges that have limited the broad application of the approach. Typically, intact proteins are less soluble than their peptide complement, which effectively results in greater losses during various stages of sample handling (i.e. limited sensitivity). Similarly, proteins above ∼40–50 kDa in size are more difficult to ionize, detect, and dissociate in most high throughput MS work flows. Additionally, major challenges associated with MS data interpretation and sensitivity, especially for higher molecular mass proteins (>100 kDa) and highly hydrophobic proteins (e.g. integral membrane proteins), remain largely unsolved, thus limiting the applicability of top-down proteomics on a large scale.Bottom-up proteomics approaches have broad application because peptides are easier to separate and analyze via LC coupled with tandem mass spectrometry (MS/MS), offering a basis for more comprehensive protein identification. As this method relies on protein digestion (which produces multiple peptides for each protein), the sample complexity can become exceedingly large, requiring several dimensions of chromatographic separations (e.g. strong cation exchange and/or high pH reversed phase) prior to the final LC separation (typically reversed phase (RP)1 C18), which is oftentimes directly coupled with the mass spectrometer (3, 8). In general, the bottom-up analysis rarely achieves 100% sequence coverage of the original proteins, which can result in an incorrect/incomplete assessment of protein isoforms and combinatorial PTMs. Additionally, the digested peptides are not detected with uniform efficiency, which challenges and distorts protein quantification efforts.Because the data obtained from top-down and bottom-up work flows are complementary, several attempts have been made to integrate the two strategies (9, 10). Typically, these efforts have utilized extensive fractionation of the intact protein separation followed by bottom-up analysis of the collected fractions. Results so far have encouraged us to consider on-line digestion methods for integrating top-down and bottom-up proteomics in a higher throughput fashion. Such an on-line digestion approach would not only benefit in terms of higher sample throughput and improved overall sensitivity but would also allow a better correlation between the observed intact protein and its peptide digestion products, greatly aiding data analysis and protein characterization efforts.So far, however, none of the on-line integrated methods have proven robust enough for routine high throughput analyses. One of the reasons for this limited success relates to the choice of the proteolytic enzyme used for the bottom-up segment. Trypsin is by far the most widely used enzyme for proteome analyses because it is affordable (relative to other proteases), it has been well characterized for proteome research, and it offers a nice array of detectable peptides due to a fairly even distribution of lysines and arginines across most proteins. However, protein/peptide RPLC separations (optimal at low pH) are fundamentally incompatible with on-line trypsin digestion (optimal at pH ∼ 8) (11, 12). Therefore, on-line coupling of trypsin digestion and RPLC separations is fraught with technological challenges, and proposed solutions (12) have not proven to be robust enough for integration into demanding high throughput platforms.Our approach to this challenge was to investigate alternative proteases that may be more compatible with automated on-line digestion, peptide separation, and MS detection. Pepsin, which is acid-compatible (i.e. it acts in the stomach to initially aid in the digestion of food) (13), is a particularly promising candidate. This protease has previously been successfully used for the targeted analyses of protein complexes, hydrogen/deuterium exchange experiments (14, 15), and characterization of biopharmaceuticals (16, 17). Generally, pepsin preferentially cleaves the peptide bond located on the N-terminal side of hydrophobic amino acids, such as leucine and phenylalanine, although with less specificity than the preferential cleavage observed for trypsin at arginine and lysine. The compatibility of pepsin with typical LC-MS operation makes it an ideal choice for the development of novel approaches combining protein digestion, protein/peptide separation, and MS-based protein/peptide identification.To develop an automated system capable of simultaneously capturing top-down and bottom-up data, enzyme kinetics of the chosen protease must be extremely fast (because one cannot wait hours as is typical when performing off-line proteolysis). Another requirement is the use of immobilized enzyme or a low enough concentration of the enzyme such that autolysis products do not obscure the detection of substrate peptides. The latter was a concern when using pepsin because prior hydrogen/deuterium exchange experiments used enzyme:substrate ratios up to 1:2 (18, 19). To test whether or not such a large concentration of pepsin was necessary, we performed pepsin digestion at ratios of 1:20. Many alternative energy inputs into the system were considered for speeding up the digestion. For instance, it has been shown that an input of ultrasonic energy could accelerate the reaction rate of a typical trypsin digestion while using small amounts of a protease (20). Because ultrasonic energy results in an increase of temperature and microenvironments of high pressure, it has been hypothesized that the higher temperature was the component responsible for the enhanced enzyme activity (21). López-Ferrer et al. (22, 23), however, have demonstrated that application of higher pressure with incorporation of a Barocycler alone can make trypsin display faster enzyme kinetics. This phenomenon can easily be integrated with an LC separation (which already operates at elevated pressure) to enable an automatable ultrarapid on-line digestion LC-MS proteomics platform. Herein, we refer to this platform as the fast on-line digestion system (FOLDS) (23). Although FOLDS has been described before using trypsin, here the system is characterized with pepsin, and the results obtained are compared with results attainable with trypsin. Like trypsin, pepsin produced efficient protein digestion in just a few minutes when placed under pressure. Because of the natural maximal activity of pepsin at low pH, the FOLDS can be incorporated with a RePlay (Advion Biosciences, Ithaca, NY) system, and this powerful combination is what ultimately makes the integration of top-down and bottom-up proteomics analyses possible. The integrated analysis begins with a chromatographic separation of intact proteins. The separated proteins are then split into two streams. One stream proceeds directly to the mass spectrometer for MS and/or tandem MS analysis. The second stream is split into a long capillary where the chromatographic separation of the proteins is maintained, but their arrival to the mass spectrometer for detection is delayed. This is in essence the concept of RePlay (24, 25). Herein, we have taken the RePlay a step further by implementing our FOLDS technology into the second split delayed stream of proteins. While these delayed proteins travel down the long and narrow capillary, we exposed them to pepsin where, in combination with the pressure, the proteins are quickly and reproducibly digested. These peptide fragments are subsequently subjected to MS and/or tandem MS analysis. The FOLDS RePlay system allows the rapid and robust incorporation of the integrated top-down bottom-up proteomics work flow with the ability to not only identify proteins but also to sequence multisite/combinatorial PTMs because all detected peptides (from the FOLDS analysis) are confined to the original chromatographic peak of the protein they were derived from. The analysis of protein mixtures using this integrated strategy reduces the total amount of samples required to obtain both the top-down and bottom-up data, increases throughput, and improves protein sequence coverage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号