首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1541篇
  免费   102篇
  2024年   2篇
  2023年   7篇
  2022年   29篇
  2021年   69篇
  2020年   38篇
  2019年   33篇
  2018年   51篇
  2017年   39篇
  2016年   66篇
  2015年   95篇
  2014年   96篇
  2013年   113篇
  2012年   162篇
  2011年   134篇
  2010年   77篇
  2009年   83篇
  2008年   80篇
  2007年   86篇
  2006年   73篇
  2005年   73篇
  2004年   60篇
  2003年   38篇
  2002年   46篇
  2001年   11篇
  2000年   4篇
  1999年   3篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有1643条查询结果,搜索用时 15 毫秒
61.
62.
Acute and chronic inflammations are key homeostatic events in health and disease. Sirtuins (SIRTs), a family of NAD-dependent protein deacylases, play a pivotal role in the regulation of these inflammatory responses. Indeed, SIRTs have anti-inflammatory effects through a myriad of signaling cascades, including histone deacetylation and gene silencing, p65/RelA deacetylation and inactivation, and nucleotide‑binding oligomerization domain, leucine rich repeat, and pyrin domain‑containing protein 3 inflammasome inhibition. Nevertheless, recent findings show that SIRTs, specifically SIRT6, are also necessary for mounting an active inflammatory response in macrophages. SIRT6 has been shown to positively regulate tumor necrosis factor alpha (TNFα) secretion by demyristoylating pro-TNFα in the cytoplasm. However, how SIRT6, a nuclear chromatin-binding protein, fulfills this function in the cytoplasm is currently unknown. Herein, we show by Western blot and immunofluorescence that in macrophages and fibroblasts there is a subpopulation of SIRT6 that is highly unstable and quickly degraded via the proteasome. Upon lipopolysaccharide stimulation in Raw 264.7, bone marrow, and peritoneal macrophages, this population of SIRT6 is rapidly stabilized and localizes in the cytoplasm, specifically in the vicinity of the endoplasmic reticulum, promoting TNFα secretion. Furthermore, we also found that acute SIRT6 inhibition dampens TNFα secretion both in vitro and in vivo, decreasing lipopolysaccharide-induced septic shock. Finally, we tested SIRT6 relevance in systemic inflammation using an obesity-induced chronic inflammatory in vivo model, where TNFα plays a key role, and we show that short-term genetic deletion of SIRT6 in macrophages of obese mice ameliorated systemic inflammation and hyperglycemia, suggesting that SIRT6 plays an active role in inflammation-mediated glucose intolerance during obesity.  相似文献   
63.
Parallel to a zooplankton study (1999-2000) observations were made (from an inflatable boat), on the presence of dolphins along a transect (-8 km long) on the axis of Culebra Bay (24 km2), Gulf of Papagayo, Pacific coast of Costa Rica. Dolphins were found during 20 of the 31 boat surveys conducted. The only species of cetacean found in the bay was Stenella attenuata, the spotted dolphin. These sightings were more frequent during the rainy season, particularly during the month of May of both years. The presence of S. attenuata in Culebra Bay might be associated to the abundances of fish and mollusks (their presumed prey: for example, squids), as evidenced by fishery statistics available for this zone of the Pacific coast of Costa Rica.  相似文献   
64.
Cross-linked homopolymers and copolymers of 2-hydroxyethyl methacrylate, HEMA, and ethylene glycol methacrylate phosphate, MOEP, have been synthesized, and the diffusion of water into these systems has been investigated. Only polymers with 0-20 mol % MOEP exhibited ideal swelling behavior as extensive fracturing occurred in the systems with greater than 20 mol % MOEP as the polymers began to swell during water sorption. Gravimetric studies were used in conjunction with magnetic resonance imaging of the diffusion front to elucidate the diffusion mechanism for these systems. In the case of the cross-linked HEMA homopolymer gels, the water transport mechanism was determined to be concentration-independent Fickian diffusion. However, as the fraction of MOEP in the network increased, the transport mechanism became increasingly exponentially concentration-dependent but remained Fickian until the polymer consisted of 30 mol % MOEP where the water transport could no longer been described by Fickian diffusion.  相似文献   
65.
Currently, there is considerable interest in the possibility of using cultured human bone marrow stromal cells (BMSCs) for skeletal tissue engineering. However, the factors that regulate their ex vivo expansion and promote their osteogenic maturation remain poorly defined. Using BMSCs obtained from a large cohort of adult donors, the effects of transforming growth factor (TGF)beta1 on these processes have been determined. BMSCs were found to express TGFbeta receptors (TbetaRs) I, II, III (betaglycan) and CD105/endoglin. The expression of TbetaRs I and II, but not TbetaR III or endoglin, was linked to the cells' state of maturation. Treatment with TGFbeta increased the colony-forming efficiency (CFE) of marrow cell suspensions but reduced the median diameter of the colonies that formed and the number of cells harvested at the end of primary culture. Treatment with TGFbeta also resulted in a significant downregulation in the expression of the developmental markers alkaline phosphatase (AP) and STRO-1. The reduction in AP was due to a decrease in the absolute number of cells expressing this enzyme and in the level (sites/cell) at which it was expressed. Overall, the changes in the expression of STRO-1 and AP are consistent with TGFbeta acting to decrease the size of the osteoprogenitor fraction, and hence the potential clinical utility of the cultured cell population.  相似文献   
66.
There is widespread interest in the use of bone marrow stromal cells (BMSC) for tissue reconstruction and repair and for gene therapy. BMSC represent the differentiated progeny of CFU-F, which however comprise a developmentally heterogeneous population as is reflected in the cellular heterogeneity of the cell populations to which they give rise. We have compared the efficacy of monoclonal antibodies recognising a series of stromal antigens, viz. STRO-1, HOP-26, CD49a and SB-10/CD166, as tools for the enrichment of CFU-F prior to culture and as developmental markers for culture-expanded BMSC. In freshly isolated bone marrow mononuclear cells (BMMNC), the proportion of antigen-positive cells was 27%, 46%, 5% and 19% for STRO-1, HOP-26, CD49a and CD166, respectively. All CD49a+ cells co-expressed STRO-1. The degree of CFU-F enrichment obtained with anti-CD49a (~18-fold) by a one-pass immunoselection strategy was significantly greater than that of all other antibodies tested. BMSC expressed higher levels of all antigens investigated (except for HOP-26) compared with BMMNC. Expression of STRO-1 and CD49a remained restricted to a subset of BMSC, whereas all BMSC were SB-10/CD166 positive. Treatment with dexamethasone (10 nM), which promotes the differentiation and further maturation of cells of the osteogenic lineage in this cell culture system, increased the expression of CD49a and HOP-26. The CD49a+ and HOP-26+ fractions of BMSC were further subdivided by dual-labelling with anti-STRO-1 and B4–78 (an antibody recognising the B/L/K isoform of the enzyme alkaline phosphatase), respectively. By using a variety of criteria, the HOP-26 antigen was identified as CD63, a member of the tetraspanin family of proteins thought to modulate integrin compartmentalisation and signalling.K.S., S.W., C.M.J. and J.A.L. gratefully acknowledge the financial support of the University Bath, the Arthritis Research Campaign and the Wellcome Trust  相似文献   
67.
The objective of the present study was to investigate the in vitro effects of octanoic acid, which accumulates in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and in Reye syndrome, on key enzyme activities of energy metabolism in the cerebral cortex of young rats. The activities of the respiratory chain complexes I–IV, creatine kinase, and Na+, K+-ATPase were evaluated. Octanoic acid did not alter the electron transport chain and creatine kinase activities, but, in contrast, significantly inhibited Na+, K+-ATPase activity both in synaptic plasma membranes and in homogenates prepared from cerebral cortex. Furthermore, decanoic acid, which is also increased in MCAD deficiency, and oleic acid strongly reduced Na+, K+-ATPase activity, whereas palmitic acid had no effect. We also examined the effects of incubating glutathione and trolox (-tocopherol) alone or with octanoic acid on Na+, K+-ATPase activity. Tested compounds did not affect Na+, K+-ATPase activity by itself, but prevented the inhibitory effect of octanoic acid. These results suggest that inhibition of Na+, K+-ATPase activity by octanoic acid is possibly mediated by oxidation of essential groups of the enzyme. Considering that Na+, K+-ATPase is critical for normal brain function, it is feasible that the significant inhibition of this enzyme activity by octanoate and also by decanoate may be related to the neurological dysfunction found in patients affected by MCAD deficiency and Reye syndrome.  相似文献   
68.
The Marcel Clouet Cave in Cognac (Charente) is a small cavity, more a shelter than a true cave, in the Cretaceous limestone cliffs along the Antenne, a tributary of the Charente River. The site suffered from a number of clandestine excavations before the work of C. Burnez, who was then followed by one of us (A.D.). The material recovered in stratigraphic context represents both Middle and Upper Paleolithic. The former is an example of Mousterian of Acheulian Tradition (MTA), while the latter includes Aurignacian (probably early) and Perigordian (probably Châtelperronian Gravettian), as well as some Solutrean objects recovered outside of stratigraphic context. It is important to note that this is one of only a few Charentian rockshelter sites, which has yielded an example of MTA.  相似文献   
69.
Rat H9c2 myoblasts were preconditioned by heat or metabolic stress followed by recovery under normal conditions. Cells were then subjected to severe ATP depletion, and stress-associated proteotoxicity was assessed on 1) the increase in a Triton X-100-insoluble component of total cellular protein and 2) the rate of inactivation and insolubilization of transfected luciferase with cytoplasmic or nuclear localization. Both heat and metabolic preconditioning elevated the intracellular heat shock protein 70 (HSP70) level and reduced cell death after sustained ATP depletion without affecting the rate and extent of ATP decrease. Each preconditioning attenuated the stress-induced insolubility among total cellular protein as well as the inactivation and insolubilization of cytoplasmic and nuclear luciferase. Transient overexpression of human HSP70 in cells also attenuated both the cytotoxic and proteotoxic effects of ATP depletion. Quercetin, a blocker of stress-responsive HSP expression, abolished the effects of stressful preconditioning but did not influence the effects of overexpressed HSP70. Analyses of the cellular fractions revealed that both the stress-preconditioned and HSP70-overexpressing cells retain the soluble pool of HSP70 longer during ATP depletion. Larger amounts of other proteins coimmunoprecipitated with excess HSP70 compared with control cells deprived of ATP. This is the first demonstration of positive correlation between chaperone activity within cells and their viability in the context of ischemia-like stress.  相似文献   
70.
We have identified a missense mutation in the motor domain of the neuronal kinesin heavy chain gene KIF5A, in a family with hereditary spastic paraplegia. The mutation occurs in the family in which the SPG10 locus was originally identified, at an invariant asparagine residue that, when mutated in orthologous kinesin heavy chain motor proteins, prevents stimulation of the motor ATPase by microtubule-binding. Mutation of kinesin orthologues in various species leads to phenotypes resembling hereditary spastic paraplegia. The conventional kinesin motor powers intracellular movement of membranous organelles and other macromolecular cargo from the neuronal cell body to the distal tip of the axon. This finding suggests that the underlying pathology of SPG10 and possibly of other forms of hereditary spastic paraplegia may involve perturbation of neuronal anterograde (or retrograde) axoplasmic flow, leading to axonal degeneration, especially in the longest axons of the central nervous system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号