首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5150篇
  免费   470篇
  2023年   10篇
  2022年   57篇
  2021年   76篇
  2020年   40篇
  2019年   72篇
  2018年   77篇
  2017年   74篇
  2016年   142篇
  2015年   234篇
  2014年   283篇
  2013年   334篇
  2012年   398篇
  2011年   356篇
  2010年   250篇
  2009年   248篇
  2008年   327篇
  2007年   312篇
  2006年   328篇
  2005年   331篇
  2004年   304篇
  2003年   238篇
  2002年   247篇
  2001年   65篇
  2000年   44篇
  1999年   56篇
  1998年   83篇
  1997年   42篇
  1996年   39篇
  1995年   37篇
  1994年   45篇
  1993年   44篇
  1992年   36篇
  1991年   32篇
  1990年   54篇
  1989年   30篇
  1988年   28篇
  1987年   18篇
  1986年   19篇
  1985年   27篇
  1984年   22篇
  1983年   16篇
  1982年   14篇
  1981年   16篇
  1980年   13篇
  1979年   10篇
  1978年   12篇
  1977年   8篇
  1976年   14篇
  1973年   8篇
  1971年   8篇
排序方式: 共有5620条查询结果,搜索用时 31 毫秒
101.
The possible existence of endemism among microorganisms resulting from and preserved by geographic isolation is one of the most controversial topics in microbial ecology. We isolated 31 strains of “Spumella-like” flagellates from remote sampling sites from all continents, including Antarctica. These and another 23 isolates from a former study were characterized morphologically and by small-subunit rRNA gene sequence analysis and tested for the maximum temperature tolerance. Only a minority of the Spumella morpho- and phylotypes from the geographically isolated Antarctic continent follow the worldwide trend of a linear correlation between ambient (air) temperature during strain isolation and heat tolerance of the isolates. A high percentage of the Antarctic isolates, but none of the isolates from locations on all other continents, were obligate psychrophilic, although some of the latter were isolated at low ambient temperatures. The drastic deviation of Antarctic representatives of Spumella from the global trend of temperature adaptation of this morphospecies provides strong evidence for geographic transport restriction of a microorganism; i.e., Antarctic protistan communities are less influenced by transport of protists to and from the Antarctic continent than by local adaptation, a subtle form of endemism.  相似文献   
102.
The pestivirus bovine viral diarrhea virus (BVDV) was shown to bind to the bovine CD46 molecule, which subsequently promotes entry of the virus. To assess the receptor usage of BVDV type 1 (BVDV-1) and BVDV-2, 30 BVDV isolates including clinical samples were assayed for their sensitivity to anti-CD46 antibodies. With a single exception the infectivity of all tested strains of BVDV-1 and BVDV-2 was inhibited by anti-CD46 antibodies, which indicates the general usage of CD46 as a BVDV receptor. Molecular analysis of the interaction between CD46 and the BVD virion was performed by mapping the virus binding site on the CD46 molecule. Single complement control protein modules (CCPs) within the bovine CD46 were either deleted or replaced by analogous CCPs of porcine CD46, which does not bind BVDV. While the epitopes recognized by anti-CD46 monoclonal antibodies which block BVDV infection were attributed to CCP1 and CCP2, in functional assays only CCP1 turned out to be essential for BVDV binding and infection. Within CCP1 two short peptides on antiparallel beta strands were identified as crucial for the binding of BVDV. Exchanges of these two peptide sequences were sufficient for a loss of function in bovine CD46 as well as a gain of function in porcine CD46. Determination of the size constraints of CD46 revealed that a minimum length of four CCPs is essential for receptor function. An increase of the distance between the virus binding domain and the plasma membrane by insertion of one to six CCPs of bovine C4 binding protein exhibited only a minor influence on susceptibility to BVDV.  相似文献   
103.
Based on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation. Surprisingly, in vivo complementation studies based on Elongator‐dependent tRNA nonsense suppression and zymocin tRNase toxin assays indicated that while AtELP1 rescued defects of a yeast elp1 mutant, the most conserved Elongator gene AtELP3, failed to complement an elp3 mutant. This lack of complementation is due to incompatibility with yeast ELP1 as coexpression of both plant genes in an elp1 elp3 yeast mutant restored Elongator's tRNA modification function in vivo. Similarly, AtELP1, not ScELP1 also supported partial complementation by yeast–plant Elp3 hybrids suggesting that AtElp1 has less stringent sequence requirements for Elp3 than ScElp1. We conclude that yeast and plant Elongator share tRNA modification roles and propose that this function might be conserved in Elongator from all eukaryotic kingdoms of life.  相似文献   
104.

Background

The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.

Results

We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel?) to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase.

Conclusions

Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.  相似文献   
105.
Four phosphoenolpyruvate (PEP) derivatives, carrying reactive or activable chemical functions in each of the three chemical regions of PEP, were assayed as alternative substrates of enzyme I (EI) of the Escherichia coli PEP:glucose phosphotransferase system. The Z- and E-isomers of 3-chlorophosphoenolpyruvate (3-Cl-PEP) were substrates, presenting K(m) values of 0.08 and 0.12 mm, respectively, very similar to the K(m) of 0.14 mm measured for PEP, and k(cat) of 40 and 4 min(-1), compared with 2,200 min(-1), for PEP. The low catalytic efficiency of these substrates permits the study of activity at in vivo EI concentrations. Z-Cl-PEP was a competitive inhibitor of PEP with a K(I) of 0.4 mm. E-Cl-PEP was not an inhibitor. Compounds 3 and 4, obtained by modification of the carboxylic and phosphate groups of PEP, were neither substrates nor inhibitors of EI, highlighting the importance of these functionalities for recognition by EI. Z-Cl-PEP is a suicide inhibitor. About 10-50 turnovers sufficed to inactivate EI completely. Such a property can be exploited to reveal and quantitate phosphoryl transfer from EI to other proteins at in vivo concentrations. Inactivation was saturatable in Z-Cl-PEP, with an apparent K(m)(inact) of 0.2-0.4 mm. The rate of inactivation increased with the concentration of EI, indicating a preferential or exclusive reaction with the dimeric form of EI. E-Cl-PEP inactivates EI much more slowly, and unlike PEP, it did not protect against inactivation by Z-Cl-PEP. This and the ineffectiveness of E-Cl-PEP as a competitive inhibitor have been related to the presence of two EI active species. Cys-502 of EI was identified by mass spectrometry as the reacting residue. The C502A EI mutant showed less than 0.06% wild-type activity. Sequence alignments and comparisons of x-ray structures of different PEP-utilizing enzymes indicate that Cys-502 might serve as a proton donor during catalysis.  相似文献   
106.

Key message

Fine mapping of the Ug99 effective stem rust resistance gene Sr45 introgressed into common wheat from the D -genome goatgrass Aegilops tauschii.

Abstract

Stem rust resistance gene Sr45, discovered in Aegilops tauschii, the progenitor of the D -genome of wheat, is effective against commercially important Puccinia graminis f. sp. tritici races prevalent in Australia, South Africa and the Ug99 race group. A synthetic hexaploid wheat (RL5406) generated by crossing Ae. tauschii accession RL5289 (carrying Sr45 and the leaf rust resistance gene Lr21) with a tetraploid experimental line ‘TetraCanthatch’ was previously used as the source in the transfer of these rust resistance genes to other hexaploid cultivars. Previous genetic studies on hexaploid wheats mapped Sr45 on the short arm of chromosome 1D with the following gene order: centromere–Sr45Sr33Lr21–telomere. To identify closely linked markers, we fine mapped the Sr45 region in a large mapping population generated by crossing CS1D5406 (disomic substitution line with chromosome 1D of RL5406 substituted for Chinese Spring 1D) with Chinese Spring. Closely linked markers based on 1DS-specific microsatellites, expressed sequence tags and AFLP were useful in the delineation of the Sr45 region. Sequences from an AFLP marker amplified a fragment that was linked with Sr45 at a distance of 0.39 cM. The fragment was located in a bacterial artificial chromosome clone of contig (ctg)2981 of the Ae. tauschii accession AL8/78 physical map. A PCR marker derived from clone MI221O11 of ctg2981 amplified 1DS-specific sequence that harboured an 18-bp indel polymorphism that specifically tagged the Sr45 carrying haplotype. This new Sr45 marker can be combined with a previously reported marker for Lr21, which will facilitate selecting Sr45 and Lr21 in breeding populations.  相似文献   
107.
Presented here is an engineered protein domain, based on Protein A, that displays a calcium-dependent binding to antibodies. This protein, ZCa, is shown to efficiently function as an affinity ligand for mild purification of antibodies through elution with ethylenediaminetetraacetic acid. Antibodies are commonly used tools in the area of biological sciences and as therapeutics, and the most commonly used approach for antibody purification is based on Protein A using acidic elution. Although this affinity-based method is robust and efficient, the requirement for low pH elution can be detrimental to the protein being purified. By introducing a calcium-binding loop in the Protein A-derived Z domain, it has been re-engineered to provide efficient antibody purification under mild conditions. Through comprehensive analyses of the domain as well as the ZCa–Fc complex, the features of this domain are well understood. This novel protein domain provides a very valuable tool for effective and gentle antibody and Fc-fusion protein purification.  相似文献   
108.
109.
110.
The adsorption behavior of chitosan on poly(ethylene terephthalate) (PET) model film surface was studied using the quartz crystal microbalance (QCM) technique. QCM with a dissipation unit (QCM-D) represents a very sensitive technique for adsorption studies at the solid/liquid interface in situ, with capability of detecting a submonolayer of adsorbate on the quartz crystal surface. Chitosan as well as PET were chosen for this study due to their promising biocompatible properties and numerous possibilities to be used in biomedical applications. As a first step, PET foils were activated by alkaline hydrolysis in order to increase their hydrophilicity. Model thin films were prepared from PET foils by the spin coating technique. The chemical composition of the obtained model PET films was analyzed using X-ray photoelectron spectroscopy (XPS) and their morphology was characterized by atomic force microscopy (AFM). Furthermore, the adsorption behavior of chitosan on these activated PET films and the influence of adsorption parameters (pH, ionic strength and chitosan solution concentration) were investigated in detail. Additionally, the surface chemistry and morphology of the PET films and the chitosan coated PET films were analyzed with XPS and AFM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号