首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5108篇
  免费   463篇
  2023年   7篇
  2022年   49篇
  2021年   75篇
  2020年   40篇
  2019年   72篇
  2018年   77篇
  2017年   74篇
  2016年   140篇
  2015年   233篇
  2014年   282篇
  2013年   332篇
  2012年   395篇
  2011年   355篇
  2010年   249篇
  2009年   248篇
  2008年   325篇
  2007年   311篇
  2006年   328篇
  2005年   329篇
  2004年   303篇
  2003年   239篇
  2002年   245篇
  2001年   65篇
  2000年   44篇
  1999年   55篇
  1998年   83篇
  1997年   42篇
  1996年   39篇
  1995年   37篇
  1994年   45篇
  1993年   44篇
  1992年   36篇
  1991年   31篇
  1990年   51篇
  1989年   30篇
  1988年   28篇
  1987年   17篇
  1986年   18篇
  1985年   26篇
  1984年   21篇
  1983年   15篇
  1982年   14篇
  1981年   15篇
  1980年   13篇
  1979年   11篇
  1978年   12篇
  1976年   14篇
  1974年   6篇
  1973年   7篇
  1971年   7篇
排序方式: 共有5571条查询结果,搜索用时 500 毫秒
871.
Intra-specific competition defines the relationship between population density and the performance of individual organisms (R-function). Observation of this relationship in nature shows it to be frequently nonlinear, and it has been argued, on intuitive grounds, that this nonlinearity is due to the type of competition (scramble or contest) being expressed. Here, we use an individual-based simulation model to investigate the effects of three resource partitioning schemes, representing different types of competition, on the form of the R-function. Results indicate that all resource partitioning schemes can give rise to concave or convex functions depending on the balance between maximum individual birth rate, maintenance cost, and demand for resources. Given high growth rates and maintenance costs, contest competitors tend to exhibit less concavity than scramblers. Therefore, population stability can be strongly affected by the strategy of resource partitioning. Life histories and environmental conditions that encourage the homogeneous distribution of resources among individuals lead to complex and unstable dynamics. Stable dynamics is fostered by heterogeneous resource distribution, which could result from such things as social hierarchies, individual and environmental variability, and large, indivisible resource packets.  相似文献   
872.

Background  

The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120.  相似文献   
873.
874.
Established histopathological criteria divide invasive breast carcinomas into defined groups. Ductal of no specific type and lobular are the two major subtypes accounting for around 75 and 15% of all cases, respectively. The remaining 10% include rarer types such as tubular, cribriform, mucinous, papillary, medullary, metaplastic, and apocrine breast carcinomas. Molecular profiling technologies, on the other hand, subdivide breast tumors into five subtypes, basal-like, luminal A, luminal B, normal breast tissue-like, and ERBB2-positive, that have different prognostic characteristics. An additional subclass termed "molecular apocrine" has recently been described, but these lesions did not exhibit all the histopathological features of classical invasive apocrine carcinomas (IACs). IACs make up 0.5-3% of the invasive ductal carcinomas, and despite the fact that they are morphologically distinct from other breast lesions, there are presently no standard molecular criteria available for their diagnosis and as a result no precise information as to their prognosis. Toward this goal our laboratories have embarked in a systematic proteomics endeavor aimed at identifying biomarkers that may characterize and subtype these lesions as well as targets that may lead to the development of novel targeted therapies and chemoprevention strategies. By comparing the protein expression profiles of apocrine macrocysts and non-malignant breast epithelial tissue we have previously reported the identification of a few proteins that are specifically expressed by benign apocrine lesions as well as by the few IACs that were available to us at the time. Here we reiterate our strategy to reveal apocrine cell markers and present novel data, based on the analysis of a considerably larger number of samples, establishing that IACs correspond to a distinct molecular subtype of breast carcinomas characterized by the expression of 15-prostaglandin dehydrogenase alone or in combination with a novel form of acyl-CoA synthetase medium-chain family member 1 (ACSM1). Moreover we show that 15-prostaglandin dehydrogenase is not expressed by other breast cancer types as determined by gel-based proteomics and immunohistochemistry analysis and that antibodies against this protein can identify IACs in an unbiased manner in a large breast cancer tissue microarray making them potentially useful as a diagnostic aid.  相似文献   
875.
Mast cells are important effectors of type I allergy but also essential regulators of innate and adaptive immune responses. The aim of this study was to develop a Cre recombinase-expressing mouse line that allows mast cell-specific inactivation of genes in vivo. Following a BAC transgenic approach, Cre was expressed under the control of the mast cell protease (Mcpt) 5 promoter. Mcpt5-Cre transgenic mice were crossed to the ROSA26-EYFP Cre excision reporter strain. Efficient Cre-mediated recombination was observed in mast cells from the peritoneal cavity and the skin while only minimal reporter gene expression was detected outside the mast cell compartment. Our results show that the Mcpt5 promoter can drive Cre expression in a mast cell-specific fashion. We expect that our Mcpt5-Cre mice will be a useful tool for the investigation of mast cell biology. Julia Scholten and Karin Hartmann contributed equally to this work. Supported by grants from the German Research Counsil (Deutsche Forschungsgemeinschaft, RO 2133/2-2) to A.R. and K.H. and the Koeln Fortune Program/Faculty of Medicine, University of Cologne, to A.R. and K.H.. The authors have no conflict of interest  相似文献   
876.
877.
Agonist stimulation of G-protein coupled receptors (GPCRs) results in the redistribution of the receptor from the cell surface into intracellular compartments through the process of endocytosis. Monitoring ligand-mediated internalization of GPCRs in living cells has become experimentally accessible by applying fluorescent reagents and fluorescence microscopy. By using cell lines that transiently, stably or endogenously express the human Y receptor (hYR) subtypes hY(1)R, hY(2)R, hY(4)R and hY(5)R and differently fluorescently tagged receptor proteins we were able to unravel further details concerning the internalization behavior of this multi-receptor/multi-ligand system. For the first time we could show that also the hY(2)R is internalized with a rate which is comparable to the hY(1)R and the hY(4)R. In contrast, the hY(5)R was internalized much slower and the rate remained unaffected by co-expression with other hYR subtypes. Furthermore receptor subtype co-expressing cells and selectively binding peptides revealed a receptor subtype selective internalization. By using novel hY(5)/hY(2) receptor chimera the receptor subtype dependent differences in hY receptor internalization could be identified on a molecular level.  相似文献   
878.
In this report, we show that biofilm formation by Streptococcus pneumoniae serotype 19 gives rise to variants (the small mucoid variant [SMV] and the acapsular small-colony variant [SCV]) differing in capsule production, attachment, and biofilm formation compared to wild-type strains. All biofilm-derived variants harbored SNPs in cps19F. SCVs reverted to SMV, but no reversion to the wild-type phenotype was noted, indicating that these variants were distinct from opaque- and transparent-phase variants. The SCV-SMV reversion frequency was dependent on growth conditions and treatment with tetracycline. Increased reversion rates were coincident with antibiotic treatment, implicating oxidative stress as a trigger for the SCV-SMV switch. We, therefore, evaluated the role played by hydrogen peroxide, the oxidizing chemical, in the reversion and emergence of variants. Biofilms of S. pneumoniae TIGR4-ΔspxB, defective in hydrogen peroxide production, showed a significant reduction in variant formation. Similarly, supplementing the medium with catalase or sodium thiosulfate yielded a significant reduction in variants formed by wild-type biofilms. Resistance to rifampin, an indicator for mutation frequency, was found to increase approximately 55-fold in biofilms compared to planktonic cells for each of the three wild-type strains examined. In contrast, TIGR4-ΔspxB grown as a biofilm showed no increase in rifampin resistance compared to the same cells grown planktonically. Furthermore, addition of 2.5 and 10 mM hydrogen peroxide to planktonic cells resulted in a 12- and 160-fold increase in mutation frequency, respectively, and gave rise to variants similar in appearance, biofilm-related phenotypes, and distribution of biofilm-derived variants. The results suggest that hydrogen peroxide and environmental conditions specific to biofilms are responsible for the development of non-phase-variable colony variants.  相似文献   
879.
Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O(2) and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis.  相似文献   
880.
Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号