首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7206篇
  免费   823篇
  国内免费   1篇
  2022年   66篇
  2021年   100篇
  2020年   59篇
  2019年   92篇
  2018年   103篇
  2017年   98篇
  2016年   187篇
  2015年   287篇
  2014年   343篇
  2013年   415篇
  2012年   500篇
  2011年   460篇
  2010年   299篇
  2009年   317篇
  2008年   416篇
  2007年   410篇
  2006年   413篇
  2005年   416篇
  2004年   390篇
  2003年   297篇
  2002年   312篇
  2001年   129篇
  2000年   103篇
  1999年   119篇
  1998年   107篇
  1997年   76篇
  1996年   67篇
  1995年   61篇
  1994年   80篇
  1993年   71篇
  1992年   80篇
  1991年   63篇
  1990年   88篇
  1989年   73篇
  1988年   85篇
  1987年   77篇
  1986年   62篇
  1985年   66篇
  1984年   56篇
  1983年   43篇
  1982年   43篇
  1981年   41篇
  1980年   30篇
  1979年   42篇
  1978年   35篇
  1977年   30篇
  1976年   35篇
  1975年   31篇
  1974年   33篇
  1973年   36篇
排序方式: 共有8030条查询结果,搜索用时 15 毫秒
71.
A Rid (Rho interaction deficient) phenotype of bacteriophage T4 mutants was defined by cold-sensitive restriction (lack of plaque formation) on rho+ hosts carrying additional polar mutations in unrelated genes, coupled to suppression (plaque formation) in otherwise isogenic strains carrying either a polarity-suppressing rho or a multicopy plasmid expressing the rho+ allele. This suggests that the restriction may be due to lower levels of Rho than what is available to T4 in the suppressing strains.--Rid394 X 4 was isolated upon hydroxylamine mutagenesis and mapped in the t gene; other t mutants (and mot, as well as dda dexA double mutants) also showed a Rid phenotype. In liquid culture in strains that restricted plaque formation Rid394 X 4 showed strong lysis inhibition (a known t- phenotype) but no prolonged phage production (another well-known t- phenotype). This implies that when Rho is limiting the t mutant shuts off phage production at the normal time. Lysis inhibition was partially relieved, and phage production prolonged to varying extents depending on growth conditions in strains that allowed plaque formation. No significant effect on early gene expression were found. Apparently, both mutant (polarity-suppressing) and wild-type Rho can function in prolonging phage production and partially relieving lysis inhibition of Rid394 X 4 when present at a sufficiently high level, and Rho may play other role(s) in T4 development than in early gene regulation.  相似文献   
72.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   
73.
Summary The cell-body layer of the lamina ganglionaris of the housefly, Musca domestica, contains the perikarya of five types of monopolar interneuron (L1–L5) along with their enveloping neuroglia (Strausfeld 1971). We confirm previous reports (Trujillo-Cenóz 1965; Boschek 1971) that monopolar cell bodies in the lamina form three structural classes: Class I, Class II, and midget monopolar cells. Class-I cells (L1 and L2) have large (8–15 m) often crescentshaped cell bodies, much perinuclear cytoplasm and deep glial invaginations. Class-II cells (L3 and L4) have smaller perikarya (4–8 m) with little perinuclear cytoplasm and no glial invaginations. The midget monopolar cell (L5) resides at the base of the cell-body layer and has a cubshaped cell body. Though embedded within a reticulum of satellite glia, the L1–L4 monopolar perikarya and their immediately proximal neurites frequently appose each other directly. Typical arthropod (-type) gap junctions are routinely observed at these interfaces. These junctions can span up to 0.8 m with an intercellular space of 2–4 nm. The surrounding nonspecialized interspace is 12–20 nm. Freezefracture replicas of monopolar appositions confirm the presence of -type gap junctions, i.e., circular plaques (0.15–0.7 m diam.) of large (10–15 nm) E-face particles. Gap junctions are present between Class I somata and their proximal neurites, between Class I and Class II somata and proximal neurites, and between Class II somata. Intercartridge coupling may exist between such monopolar somata. The cell body and proximal neurite of L5 were not examined. We also find that Class I and Class II somata are extensively linked to their satellite glia via gap junctions. The gap width and nonjunctional interspace between neuron and glia are the same as those found between neurons. The particular arrangement and morphology of lamina monopolar neurons suggest that coupling or low resistance pathways between functionally distinct neurons and between neuron and glia are probably related to the metabolic requirements of the nuclear layer and may play a role in wide field signal averaging and light adaptation.  相似文献   
74.
75.
The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres.  相似文献   
76.
Synopsis Scaphirhynchus albus and S. platorynchus were studied in Missouri during 1978–1979 to assess their distribution and abundance, to obtain information on their life histories, and to identify existing or potential threats to their survival. S. platorynchus was collected in substantial numbers (4355 specimens) at all 12 sampling stations in the Missouri and Mississippi rivers, while only 11 S. albus were captured from 6 stations. Twelve specimens identified in the field as hybrids between the two species were captured from 4 stations. Morphometric and meristic comparisons of presumed hybrids with the parent species, using cluster and principal components analyses, demonstrated intermediacy of most specimens identified in the field as hybrids. Aquatic insects comprised most of the diet of S. platorynchus and S. albus, but S. albus and the hybrids had consumed considerable quantities of fish. S. albus grew more rapidly than S. platorynchus, while the growth of hybrids was intermediate. Hybridization appears to be a recent phenomenon, resulting from man-caused changes in the big-river environment. Hybridization may be a threat to survival of S. albus in the study streams.  相似文献   
77.
78.
Mutants of Saccharomyces cerevisiae with defects in sucrose or raffinose fermentation were isolated. In addition to mutations in the SUC2 structural gene for invertase, we recovered 18 recessive mutations that affected the regulation of invertase synthesis by glucose repression. These mutations included five new snf1 (sucrose nonfermenting) alleles and also defined five new complementation groups, designated snf2, snf3, snf4, snf5, and snf6. The snf2, snf4, and snf5 mutants produced little or no secreted invertase under derepressing conditions and were pleiotropically defective in galactose and glycerol utilization, which are both regulated by glucose repression. The snf6 mutant produced low levels of secreted invertase under derepressing conditions, and no pleiotropy was detected. The snf3 mutants derepressed secreted invertase to 10-35% the wild-type level but grew less well on sucrose than expected from their invertase activity; in addition, snf3 mutants synthesized some invertase under glucose-repressing conditions.--We examined the interactions between the different snf mutations and ssn6, a mutation causing constitutive (glucose-insensitive) high-level invertase synthesis that was previously isolated as a suppressor of snf1. The ssn6 mutation completely suppressed the defects in derepression of invertase conferred by snf1, snf3, snf4 and snf6, and each double mutant showed the constitutivity for invertase typical of ssn6 single mutants. In contrast, snf2 ssn6 and snf5 ssn6 strains produced only moderate levels of invertase under derepressing conditions and very low levels under repressing conditions. These findings suggest roles for the SNF1 through SNF6 and SSN6 genes in the regulation of SUC2 gene expression by glucose repression.  相似文献   
79.
Summary The organization of the ribosomal DNA (rDNA) repcat unit in the standard wild-type strain of Neurospora crassa, 74-OR23-1A, and in 30 other wild-type strains and wild-collected strains of N. crassa, N. tetrasperma, N. sitophila, N. intermedia, and N. discreta isolated from nature, was investigated by restriction enzyme digestion of genomic DNA, and probing of the Southern-blotted DNA fragments with specific cloned pieces of the rDNA unit from 74-OR23-1A. The size of the rDNA unit in 74-OR23-1A was shown to be 9.20 kilobase pairs (kb) from blotting data, and the average for all strains was 9.11+0.21 kb; standard error=0.038; coefficient of variation (C.V.)=2.34%. These data indicate that the rDNA repeat unit size has been highly conserved among the Neurospora strains investigated. However, while all strains have a conserved HindIII site near the 5 end of the 25 S rDNA coding sequence, a polymorphism in the number and/or position of HindIII sites in the nontranscribed spacer region was found between strains. The 74-OR23-1A strain has two HindIII sites in the spacer, while others have from 0 to at least 3. This restriction site polymorphism is strain-specific and not species-specific. It was confirmed for some strains by restriction analysis of clones containing most of the rDNA repeat unit. The current restriction map of the 74-OR23-1A rDNA repeat unit is presented.  相似文献   
80.
This paper describes a combined technique for gross skeletal staining and Feulgen staining of avian embryonic limbs. The gross skeletal stain uses Victoria blue B, and the Feulgen stain is done en bloc before the skeletal stain is applied. The method has been useful in determining the cellular origins of supernumerary structures arising from experiments in which quail wing mesoderm is grafted into chick wing buds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号