首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   12篇
  202篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   10篇
  2017年   9篇
  2016年   6篇
  2015年   15篇
  2014年   13篇
  2013年   19篇
  2012年   17篇
  2011年   21篇
  2010年   3篇
  2009年   8篇
  2008年   14篇
  2007年   6篇
  2006年   5篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
51.
52.
Use of Hypericum perforatum L. has increased in the past few years due to the antidepressant and antiviral activities found in extracts of this plant. As a result of its potential as a pharmaceutical, a new system was developed for in vitro culture of this species. Leaf explants were inoculated onto MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 0.45 or 4.5 μM) and 6-benzyladenine (BA, 0.44 or 4.4 μM) or kinetin (0.46 or 4.6 μM). Explants were cultivated under dark or light conditions to induce callus formation. Callus initiation was observed in all media evaluated and the highest cell proliferation was obtained from explants cultivated in the presence of 4.4 μM BA and 4.5 μM 2,4-D in the dark. Shoot induction was obtained from callus induced on 4.6 μM kinetin and 0.45 μM 2,4-D 6 weeks after transferring the callus to a MS medium supplemented with 4.4 μM BA. Roots were induced from shoots on full and half-strength MS media with or without indolebutyric acid (IBA, 4.9 μM) and the highest rooting frequencies were obtained on half-strength MS medium, regardless of the presence of IBA. Regenerated plants were easily acclimated in greenhouse conditions. The procedure reported here allows the micropropagation of H. perforatum in five months of culture and the proliferation of cell masses which could be used for studies on organic compounds of pharmaceutical interest. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
53.
Calorie-enriched diet and lack of exercise are causing a worldwide surge of obesity, insulin resistance and lipid accretion in liver (i.e. hepatic steatosis), which can lead to steatohepatitis. Steatosis and nonalcoholic steatohepatitis (NASH) can also be induced by drugs such as amiodarone, tamoxifen and some antiretroviral drugs, including stavudine and zidovudine. There is accumulating evidence that mitochondrial dysfunction (more particularly respiratory chain deficiency) plays a key role in the physiopathology of NASH whatever its initial cause. In contrast, the mitochondrial beta-oxidation of fatty acids can be either increased (as in insulin resistance-associated NASH) or decreased (as in drug-induced NASH). However, in both circumstances, generation of reactive oxygen species (ROS) by the damaged respiratory chain can be augmented. ROS generation in an environment enriched in lipids in turn induces lipid peroxidation which releases highly reactive aldehydic derivatives (e.g. malondialdehyde) that have diverse detrimental effects on hepatocytes and other hepatic cells. In hepatocytes, ROS, reactive nitrogen species and lipid peroxidation products further impair the respiratory chain, either directly or indirectly through oxidative damage to the mitochondrial genome. This consequently leads to the generation of more ROS and a vicious cycle occurs. Mitochondrial dysfunction can also lead to apoptosis or necrosis depending on the energy status of the cell. ROS and lipid peroxidation products also increase the generation of several cytokines (TNF-alpha, TGF-beta, Fas ligand) playing a key role in cell death, inflammation and fibrosis. Recent investigations have shown that some genetic polymorphisms can significantly increase the risk of steatohepatitis and that several drugs can prevent or even reverse NASH. Interestingly, most of these drugs could exert their beneficial effects by improving directly or indirectly mitochondrial function in liver. Finding a drug, which could fully prevent oxidative stress and mitochondrial dysfunction in NASH is a major challenge for the next decade.  相似文献   
54.
55.
Over the past three decades, the increasing rates of obesity have led to an alarming obesity epidemic worldwide. Obesity is associated with an increased risk of cardiovascular diseases; thus, it is essential to define the molecular mechanisms by which obesity affects heart function. Individuals with obesity and overweight have shown changes in cardiac structure and function, leading to cardiomyopathy, hypertrophy, atrial fibrillation, and arrhythmia. Autophagy is a highly conserved recycling mechanism that delivers proteins and damaged organelles to lysosomes for degradation. In the hearts of patients and mouse models with obesity, this process is impaired. Furthermore, it has been shown that autophagy flux restoration in obesity models improves cardiac function. Therefore, autophagy may play an important role in mitigating the adverse effects of obesity on the heart. Throughout this review, we will discuss the benefits of autophagy on the heart in obesity and how regulating autophagy might be a therapeutic tool to reduce the risk of obesity‐associated cardiovascular diseases.  相似文献   
56.
Changes in the cell envelope composition of mycobacteria cause major changes in cytokine profiles of infected antigen presenting cells. We describe here the modulation of inflammatory responses by Mycobacterium abscessus, an emerging pathogen in cystic fibrosis. M. abscessus is able to switch from a smooth (S) to a rough (R) morphotype by the loss of a surface glycopeptidolipid. R variants are associated with severe clinical forms and a 'hyper-proinflammatory' response in ex vivo and in vivo models. Using partitioning of cell surface components we found that a complex fraction, more abundant in R variants than in S variants, made a major contribution to the TLR-2-dependent hyper-proinflammatory response induced by R variants. Lipoproteins were the main TLR-2 agonists in this fraction, consistent with the larger amounts of 16 lipoproteins in cell surface extracts from R variants; 15 out of 16 being more strongly induced in R variant than in S variant. Genetic interruption of glycopeptidolipid pathway in wild-type S variant resulted in R phenotype with similar induction of lipoprotein genes. In conclusion, R morphotype in M. abscessus is associated with increased synthesis/exposure at the cell surface of lipoproteins, these changes profoundly modifying the innate immune response through TLR-2-dependent mechanisms.  相似文献   
57.
The GM polymorphism of human immunoglobulins is analyzed in three Berber populations of southern Tunisia and compared to other GM data. Genetic diversity among Tunisian populations is higher than that among Europeans but does not exhibit any significant geographic or linguistic structure. This result suggests a complex pattern of genetic differentiation.  相似文献   
58.
Tricyclo-DNA (tcDNA) is a conformationally constrained oligonucleotide analog that has demonstrated great therapeutic potential as antisense oligonucleotide (ASO) for several diseases. Like most ASOs in clinical development, tcDNA were modified with phosphorothioate (PS) backbone for therapeutic purposes in order to improve their biodistribution by enhancing association with plasma and cell protein. Despite the advantageous protein binding properties, systemic delivery of PS-ASO remains limited and PS modifications can result in dose limiting toxicities in the clinic. Improving extra-hepatic delivery of ASO is highly desirable for the treatment of a variety of diseases including neuromuscular disorders such as Duchenne muscular dystrophy. We hypothesized that conjugation of palmitic acid to tcDNA could facilitate the delivery of the ASO from the bloodstream to the interstitium of the muscle tissues. We demonstrate here that palmitic acid conjugation enhances the potency of tcDNA-ASO in skeletal and cardiac muscles, leading to functional improvement in dystrophic mice with significantly reduced dose of administered ASO. Interestingly, palmitic acid-conjugated tcDNA with a full phosphodiester backbone proved effective with a particularly encouraging safety profile, offering new perspectives for the clinical development of PS-free tcDNA-ASO for neuromuscular diseases.  相似文献   
59.
A High Throughput Screening campaign allowed the identification of a novel class of ureas as 11β-HSD1 inhibitors. Rational chemical optimization provided potent and selective inhibitors of both human and murine 11β-HSD1 with an appropriate ADME profile and ex vivo activity in target tissues.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号