首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1611篇
  免费   152篇
  国内免费   7篇
  2023年   8篇
  2022年   14篇
  2021年   23篇
  2020年   25篇
  2019年   22篇
  2018年   28篇
  2017年   25篇
  2016年   54篇
  2015年   55篇
  2014年   59篇
  2013年   100篇
  2012年   134篇
  2011年   100篇
  2010年   83篇
  2009年   64篇
  2008年   92篇
  2007年   108篇
  2006年   94篇
  2005年   74篇
  2004年   83篇
  2003年   86篇
  2002年   79篇
  2001年   25篇
  2000年   19篇
  1999年   26篇
  1998年   23篇
  1997年   19篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   19篇
  1988年   15篇
  1987年   9篇
  1986年   13篇
  1985年   11篇
  1984年   12篇
  1983年   9篇
  1982年   8篇
  1981年   11篇
  1980年   7篇
  1979年   10篇
  1977年   9篇
  1974年   5篇
  1973年   4篇
  1970年   3篇
  1968年   4篇
排序方式: 共有1770条查询结果,搜索用时 17 毫秒
991.
Mutations in one of the DNA repair genes are one of the most common reasons for cancer, and it may be assumed that the individual genetic background modulating the DNA repair capacity may affect the susceptibility to cancer. Numerous polymorphisms (mainly SNPs) have been identified for DNA repair genes, although their functional outcome and phenotypic effect is often unknown. The aim of the present review is to evaluate the studies investigating a possible influence of DNA repair polymorphisms in the risk of sporadic colorectal cancer and/or adenoma. Overall, no relevant common findings emerge among the studies, except for some statistically significant associations between polymorphisms in the XRCC1 and XPD genes, mainly for colorectal adenoma risk. Other individual associations remain to be confirmed. This inconclusive data may suggest that the modulation of cancer risk depends not only on a single gene/SNP, but also on a joint effect of multiple polymorphisms (or haplotypes) within different genes or pathways, in close interaction with environmental factors. The relevance of many low-penetrance genes in cancer susceptibility is supposed to be very subtle. Several reviewed association studies revealed weaknesses in their design. However, there has been a progressive improvement over the years in aspects such as simultaneous genotyping and combined analyses of different polymorphisms in larger numbers of patients and controls, as well as stratification of results by ethnicity, gender, and tumor localization. This gained experience shows that only carefully designed studies of a sufficient statistical power may resolve the relationships between polymorphisms and colorectal cancer risk.  相似文献   
992.
993.
Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2β2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1−/−) leads to embryonic lethality in mouse, whereas P4ha1+/− mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2−/− mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1+/−;P4ha2−/− mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1+/−;P4ha2−/− mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2−/− mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype.  相似文献   
994.
The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16cm and 24cm). The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r) between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003), but more hip external rotation and knee abduction (p ≤ 0.030), than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24cm step down task (p ≤ 0.029). While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001). Angles at the knee and hip had a moderate to excellent correlation (r = 0.51–0.98), but less consistently so at the pelvis and trunk (r = 0.21–0.96). The differences in movement patterns between the single leg squat and the step down should be considered when selecting a single leg task for evaluation or treatment. The high correlation of knee and hip angles between the three tasks indicates that similar information about knee and hip kinematics was gained from each of these tasks, while pelvis and trunk angles were less well predicted.  相似文献   
995.

Objective

Cardiovascular response to passive leg raising (PLR) is useful in assessing preload reserve, but it has not been studied longitudinally during pregnancy. We aimed to investigate gestational age associated serial changes in maternal functional hemodynamics and establish longitudinal reference ranges for the second half of pregnancy.

Materials and Methods

This was a prospective longitudinal study on 98 healthy pregnant women who were examined 3–5 times during 20–40 weeks of gestation (a total of 441 observations). Maternal cardiac function and systemic hemodynamics were assessed at baseline and 90 seconds after PLR using impedance cardiography (ICG). The main outcome measures were gestational age specific changes in ICG-derived variables of maternal cardiovascular function and functional hemodynamic response to PLR.

Results

Hemodynamic response to PLR varied during pregnancy. PLR led to an insignificant increase in stroke volume during 20+0 to 31+6 weeks, but later in gestation the stroke volume was slightly lower at PLR compared to baseline. PLR caused no significant change in cardiac output between 20+0 and 23+6 weeks and a significant decrease after 24+0 weeks. A decrease in heart rate, mean arterial pressure, and cardiac contractility was observed during PLR throughout the second half of pregnancy. Systemic vascular resistance was reduced by PLR up to 32+0 weeks, but increased slightly thereafter.

Conclusion

Healthy pregnant women appear to have limited preload reserve and reduced cardiac contractility, especially in the third trimester, which makes them vulnerable to fluid overload and cardiac failure.  相似文献   
996.
997.
For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.  相似文献   
998.
Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens.  相似文献   
999.
PurposeThe molecular drivers of metastasis in breast cancer are not well understood. Therefore, we sought to identify the biological processes underlying distant progression and define a prognostic signature for metastatic potential in breast cancer.ResultsWe identified a broad range of metastatic potential that was independent of intrinsic breast cancer subtypes. 146 genes were significantly associated with metastasis progression and were linked to cancer-related biological functions, including cell migration/adhesion, Jak-STAT, TGF-beta, and Wnt signaling. These genes were used to develop a platform-independent gene expression signature (M-Sig), which was trained and subsequently validated on 5 independent cohorts totaling nearly 1800 breast cancer patients with all p-values < 0.005 and hazard ratios ranging from approximately 2.5 to 3. On multivariate analysis accounting for standard clinicopathologic prognostic variables, M-Sig remained the strongest prognostic factor for metastatic progression, with p-values < 0.001 and hazard ratios > 2 in three different cohorts.ConclusionM-Sig is strongly prognostic for metastatic progression, and may provide clinical utility in combination with treatment prediction tools to better guide patient care. In addition, the platform-independent nature of the signature makes it an excellent research tool as it can be directly applied onto existing, and future, datasets.  相似文献   
1000.
The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload concentrations in these subjects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号