首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1739篇
  免费   161篇
  国内免费   7篇
  1907篇
  2023年   10篇
  2022年   17篇
  2021年   27篇
  2020年   24篇
  2019年   23篇
  2018年   33篇
  2017年   24篇
  2016年   60篇
  2015年   62篇
  2014年   63篇
  2013年   103篇
  2012年   141篇
  2011年   111篇
  2010年   88篇
  2009年   66篇
  2008年   100篇
  2007年   112篇
  2006年   101篇
  2005年   82篇
  2004年   90篇
  2003年   87篇
  2002年   85篇
  2001年   34篇
  2000年   30篇
  1999年   24篇
  1998年   22篇
  1997年   19篇
  1996年   12篇
  1995年   14篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   18篇
  1990年   15篇
  1989年   11篇
  1988年   16篇
  1987年   9篇
  1986年   19篇
  1985年   17篇
  1984年   13篇
  1983年   15篇
  1982年   8篇
  1981年   11篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1974年   5篇
  1973年   4篇
  1968年   5篇
排序方式: 共有1907条查询结果,搜索用时 15 毫秒
91.
92.
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress. Furthermore, OGG1 binds to PARP-1 through its BRCA1 C-terminal (BRCT) domain. OGG1 stimulated the poly(ADP-ribosyl)ation activity of PARP-1, whereas decreased poly(ADP-ribose) levels were observed in OGG1(-/-) cells compared with wild-type cells in response to DNA damage. Importantly, activated PARP-1 inhibits OGG1. Although the OGG1 polymorphic variant proteins R229Q and S326C bind to PARP-1, these proteins were defective in activating PARP-1. Furthermore, OGG1(-/-) cells were more sensitive to PARP inhibitors alone or in combination with a DNA-damaging agent. These findings indicate that OGG1 binding to PARP-1 plays a functional role in the repair of oxidative DNA damage.  相似文献   
93.
Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP) with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.  相似文献   
94.
GTP binding regulatory protein (G protein)‐coupled receptors can activate MAPK pathways via G protein‐dependent and ‐independent mechanisms. However, the physiological outcomes correlated with the cellular signaling events are not as well characterized. In this study, we examine the involvement of G protein and β‐arrestin 2 pathways in kappa opioid receptor‐induced, extracellular signal‐regulated kinase 1/2 (ERK1/2)‐mediated proliferation of both immortalized and primary astrocyte cultures. As different agonists induce different cellular signaling pathways, we tested the prototypic kappa agonist, U69593 as well as the structurally distinct, non‐nitrogenous agonist, C(2)‐methoxymethyl salvinorin B (MOM‐Sal‐B). In immortalized astrocytes, U69593, activated ERK1/2 by a rapid (min) initial stimulation that was sustained over 2 h and increased proliferation. Sequestration of activated Gβγ subunits attenuated U69593 stimulation of ERK1/2 and suppressed proliferation in these cells. Furthermore, small interfering RNA silencing of β‐arrestin 2 diminished sustained ERK activation induced by U69593. In contrast, MOM‐Sal‐B induced only the early phase of ERK1/2 phosphorylation and did not affect proliferation of immortalized astrocytes. In primary astrocytes, U69593 produced the same effects as seen in immortalized astrocytes. MOM‐Sal‐B elicited sustained ERK1/2 activation which was correlated with increased primary astrocyte proliferation. Proliferative actions of both agonists were abolished by either inhibition of ERK1/2, Gβγ subunits or β‐arrestin 2, suggesting that both G protein‐dependent and ‐independent ERK pathways are required for this outcome.  相似文献   
95.

Background

Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease.

Methodology/Principal Findings

We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue), antiangiogenic interferon α (overexpressed in the scleroderma dermis) and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon α and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal.

Conclusion/Significance

These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease. Since rarefaction has been little studied, these data may have implications for other diseases characterized by loss of capillaries including hypertension, congestive heart failure and scar formation.  相似文献   
96.
Francisella tularensis (Ft), the causative agent of tularemia, elicits a potent inflammatory response early in infection, yet persists within host macrophages and can be lethal if left unchecked. We report in this study that Ft live vaccine strain (LVS) infection of murine macrophages induced TLR2-dependent expression of alternative activation markers that followed the appearance of classically activated markers. Intraperitoneal infection with Ft LVS also resulted in induction of alternatively activated macrophages (AA-Mphi). Induction of AA-Mphi by treatment of cells with rIL-4 or by infection with Ft LVS promoted replication of intracellular Ftn, in contrast to classically activated (IFN-gamma plus LPS) macrophages that promoted intracellular killing of Ft LVS. Ft LVS failed to induce alternative activation in IL-4Ralpha(-/-) or STAT6(-/-) macrophages and prolonged the classical inflammatory response in these cells, resulting in intracellular killing of Ft. Treatment of macrophages with anti-IL-4 and anti-IL-13 Ab blunted Ft-induced AA-Mphi differentiation and resulted in increased expression of IL-12 p70 and decreased bacterial replication. In vivo, Ft-infected IL-4Ralpha(-/-) mice exhibited increased survival compared with wild-type mice. Thus, redirection of macrophage differentiation by Ft LVS from a classical to an alternative activation state enables the organism to survive at the expense of the host.  相似文献   
97.
We performed a two-tiered, whole-genome association study of Parkinson disease (PD). For tier 1, we individually genotyped 198,345 uniformly spaced and informative single-nucleotide polymorphisms (SNPs) in 443 sibling pairs discordant for PD. For tier 2a, we individually genotyped 1,793 PD-associated SNPs (P<.01 in tier 1) and 300 genomic control SNPs in 332 matched case-unrelated control pairs. We identified 11 SNPs that were associated with PD (P<.01) in both tier 1 and tier 2 samples and had the same direction of effect. For these SNPs, we combined data from the case-unaffected sibling pair (tier 1) and case-unrelated control pair (tier 2) samples and employed a liberalization of the sibling transmission/disequilibrium test to calculate odds ratios, 95% confidence intervals, and P values. A SNP within the semaphorin 5A gene (SEMA5A) had the lowest combined P value (P=7.62 x 10(-6)). The protein encoded by this gene plays an important role in neurogenesis and in neuronal apoptosis, which is consistent with existing hypotheses regarding PD pathogenesis. A second SNP tagged the PARK11 late-onset PD susceptibility locus (P=1.70 x 10(-5)). In tier 2b, we also selected for genotyping additional SNPs that were borderline significant (P<.05) in tier 1 but that tested a priori biological and genetic hypotheses regarding susceptibility to PD (n=941 SNPs). In analysis of the combined tier 1 and tier 2b data, the two SNPs with the lowest P values (P=9.07 x 10(-6); P=2.96 x 10(-5)) tagged the PARK10 late-onset PD susceptibility locus. Independent replication across populations will clarify the role of the genomic loci tagged by these SNPs in conferring PD susceptibility.  相似文献   
98.
Localization of laminin alpha4-chain in developing and adult human tissues.   总被引:3,自引:0,他引:3  
Recent studies suggest important functions for laminin-8 (Ln-8; alpha4beta1gamma1) in vascular and blood cell biology, but its distribution in human tissues has remained elusive. We have raised a monoclonal antibody (MAb) FC10, and by enzyme-linked immunoassay (EIA) and Western blotting techniques we show that it recognizes the human Ln alpha4-chain. Immunoreactivity for the Ln alpha4-chain was localized in tissues of mesodermal origin, such as basement membranes (BMs) of endothelia, adipocytes, and skeletal, smooth, and cardiac muscle cells. In addition, the Ln alpha4-chain was found in regions of some epithelial BMs, including epidermis, salivary glands, pancreas, esophageal and gastric glands, intestinal crypts, and some renal medullary tubules. Developmental differences in the distribution of Ln alpha4-chain were detected in skeletal muscle, walls of vessels, and intestinal crypts. Ln alpha4- and Ln alpha2-chains co-localized in BMs of fetal skeletal muscle cells and in some epithelial BMs, e.g., in gastric glands and acini of pancreas. Cultured human pulmonary artery endothelial (HPAE) cells produced Ln alpha4-chain as M(r) 180,000 and 200,000 doublet and rapidly deposited it to the growth substratum. In cell-free extracellular matrices of human kidney and lung, Ln alpha4-chain was found as M(r) 180,000 protein.  相似文献   
99.
KRAS mutations are major factors involved in initiation and maintenance of pancreatic tumors. The impact of different mutations on patient survival has not been clearly defined. We screened tumors from 171 pancreatic cancer patients for mutations in KRAS and CDKN2A genes. Mutations in KRAS were detected in 134 tumors, with 131 in codon 12 and only 3 in codon 61. The GGT>GAT (G12D) was the most frequent mutation and was present in 60% (80/134). Deletions and mutations in CDKN2A were detected in 43 tumors. Analysis showed that KRAS mutations were associated with reduced patient survival in both malignant exocrine and ductal adenocarcinomas (PDAC). Patients with PDACs that had KRAS mutations showed a median survival of 17 months compared to 30 months for those without mutations (log-rank P = 0.07) with a multivariate hazard ratio (HR) of 2.19 (95%CI 1.09–4.42). The patients with G12D mutation showed a median survival of 16 months (log-rank-test P = 0.03) and an associated multivariate HR 2.42 (95%CI 1.14–2.67). Although, the association of survival in PDAC patients with CDKN2A aberrations in tumors was not statistically significant, the sub-group of patients with concomitant KRAS mutations and CDKN2A alterations in tumors were associated with a median survival of 13.5 months compared to 22 months without mutation (log-rank-test P = 0.02) and a corresponding HR of 3.07 (95%CI 1.33–7.10). Our results are indicative of an association between mutational status and survival in PDAC patients, which if confirmed in subsequent studies can have potential clinical application.  相似文献   
100.
Prolyl 4-hydroxylases (P4Hs) are 2-oxoglutarate dioxygenases that catalyze the hydroxylation of peptidyl prolines. They play an important role in collagen synthesis, oxygen homeostasis, and plant cell wall formation. We describe four structures of a P4H from the green alga Chlamydomonas reinhardtii, two of the apoenzyme at 1.93 and 2.90 A resolution, one complexed with the competitive inhibitor Zn2+, and one with Zn2+ and pyridine 2,4-dicarboxylate (which is an analogue of 2-oxoglutarate) at 1.85 A resolution. The structures reveal the double-stranded beta-helix core fold (jellyroll motif), typical for 2-oxoglutarate dioxygenases. The catalytic site is at the center of an extended shallow groove lined by two flexible loops. Mutagenesis studies together with the crystallographic data indicate that this groove participates in the binding of the proline-rich peptide-substrates. It is discussed that the algal P4H and the catalytic domain of collagen P4Hs have notable structural similarities, suggesting that these enzymes form a separate structural subgroup of P4Hs different from the hypoxia-inducible factor P4Hs. Key structural differences between these two subgroups are described. These studies provide first insight into the structure-function relationships of the collagen P4Hs, which unlike the hypoxia-inducible factor P4Hs use proline-rich peptides as their substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号