首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5250篇
  免费   508篇
  国内免费   209篇
  5967篇
  2023年   48篇
  2022年   119篇
  2021年   190篇
  2020年   126篇
  2019年   143篇
  2018年   150篇
  2017年   93篇
  2016年   170篇
  2015年   276篇
  2014年   291篇
  2013年   355篇
  2012年   387篇
  2011年   378篇
  2010年   244篇
  2009年   203篇
  2008年   258篇
  2007年   228篇
  2006年   246篇
  2005年   187篇
  2004年   202篇
  2003年   150篇
  2002年   129篇
  2001年   106篇
  2000年   107篇
  1999年   97篇
  1998年   40篇
  1997年   43篇
  1996年   38篇
  1995年   36篇
  1994年   43篇
  1993年   41篇
  1992年   66篇
  1991年   74篇
  1990年   47篇
  1989年   57篇
  1988年   57篇
  1987年   55篇
  1986年   46篇
  1985年   55篇
  1984年   43篇
  1983年   31篇
  1982年   23篇
  1981年   20篇
  1979年   31篇
  1978年   23篇
  1977年   18篇
  1975年   21篇
  1974年   22篇
  1973年   25篇
  1971年   17篇
排序方式: 共有5967条查询结果,搜索用时 0 毫秒
291.
The human cathelicidin LL‐37, a pleiotropic host defense peptide, is down‐regulated in gastric adenocarcinomas. We therefore investigated whether this peptide suppresses gastric cancer growth. LL‐37 lowered gastric cancer cell proliferation and delayed G1‐S transition in vitro and inhibits the growth of gastric cancer xenograft in vivo. In this connection, LL‐37 increased the tumor‐suppressing bone morphogenetic protein (BMP) signaling, manifested as an increase in BMP4 expression and the subsequent Smad1/5 phosphorylation and the induction of p21Waf1/Cip1. The anti‐mitogenic effect, Smad1/5 phosphorylation, and p21Waf1/Cip1 up‐regulation induced by LL‐37 were reversed by the knockdown of BMP receptor II. The activation of BMP signaling was paralleled by the inhibition of chymotrypsin‐like and caspase‐like activity of proteasome. In this regard, proteasome inhibitor MG‐132 mimicked the effect of LL‐37 by up‐regulating BMP4 expression and Smad1/5 phosphorylation. Further analysis of clinical samples revealed that LL‐37 and p21Waf1/Cip1 mRNA expressions were both down‐regulated in gastric cancer tissues and their expressions were positively correlated. Collectively, we describe for the first time that LL‐37 inhibits gastric cancer cell proliferation through activation of BMP signaling via a proteasome‐dependent mechanism. This unique biological activity may open up novel therapeutic avenue for the treatment of gastric cancer. J. Cell. Physiol. 223: 178–186, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
292.
The integrity of structural connectivity in a functional brain network supports the efficiency of neural processing within relevant brain regions. This study aimed to quantitatively investigate the short- and long-range fibers, and their differential roles in the lower cognitive efficiency in aging and dementia. Three groups of healthy young, healthy older adults and patients with Alzheimer''s disease (AD) participated in this combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study on prospective memory (PM). Short- and long-range fiber tracts within the PM task engaged brain networks were generated. The correlation between the fMRI signal change, PM performance and the DTI characters were calculated. FMRI results showed that the PM-specific frontal activations in three groups were distributed hierarchically along the rostrocaudal axis in the frontal lobe. In an overall PM condition generally activated brain network among the three groups, tractography was used to generate the short-range fibers, and they were found impaired in both healthy older adults and AD patients. However, the long-range fiber tracts were only impaired in AD. Additionally, the mean diffusivity (MD) of short-range but not long-range fibers was positively correlated with fMRI signal change and negatively correlated with the efficiency of PM performance. This study suggests that the disintegrity of short-range fibers may contribute more to the lower cognitive efficiency and higher compensatory brain activation in healthy older adults and more in AD patients.  相似文献   
293.
The 26th annual Barrels meeting was convened on the campus of the University of California San Diego, not far from the shores of the Pacific Ocean. The meeting focused on three main themes: the structure and function of the thalamic reticular nucleus, the neurovasculature system and its role in brain metabolism, and the origins and functions of cortical GABAergic interneurons. In addition to the major themes, there were short talks, a data blitz, and a poster session which highlighted the diversity and quality of the research ongoing in the rodent whisker-to-barrel system.  相似文献   
294.
The protonization pattern of the endogenous donor component D1 which feeds electrons directly into chl-a+II has been analyzed in Tris-washed inside-out thylakoids with the aid of appropriate pH-indicators. It was found that under repetitive flash excitation the amount of protons released is proportional to the extent of D1-oxidation, depending on the time between the flashes. The kinetics of D1-oxidation (being practically the same as in normal Tris-washed chloroplasts) are faster than the proton release by two orders of magnitude. The results lead to the conclusion that D1 is protonized in the reduced state with pK(Dox1) < 5 and becomes deprotonized in the oxidized state with pK(Dred1) ? 8. The proton release is kinetically limited by a transport barrier. Implications on the interpretation of the proton release pattern in preparation with intact water oxidation are discussed.  相似文献   
295.
We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics.  相似文献   
296.
Ma H  Burger C  Hsiao BS  Chu B 《Biomacromolecules》2011,12(4):970-976
Ultrafine polysaccharide nanofibers (i.e., cellulose and chitin) with 5-10 nm diameters were employed as barrier layers in a new class of thin-film nanofibrous composite (TFNC) membranes for water purification. In addition to concentration, the viscosity of the polysaccharide nanofiber coating suspension was also found to be affected by the pH value and ionic strength. When compared with two commercial UF membranes (PAN10 and PAN400), 10-fold higher permeation flux with above 99.5% rejection ratio were achieved by using ultrafine cellulose nanofibers-based TFNC membranes for ultrafiltration of oil/water emulsions. The very high surface-to-volume ratio and negatively charged surface of cellulose nanofibers, which lead to a high virus adsorption capacity as verified by MS2 bacteriophage testing, offer further opportunities in drinking water applications. The low cost of raw cellulose/chitin materials, the environmentally friendly fabrication process, and the impressive high-flux performance indicate that such ultrafine polysaccharide nanofibers-based TFNC membranes can surpass conventional membrane systems in many different water applications.  相似文献   
297.
Cao  Ying  Li  Jing  Chu  Xin  Liu  Haizhou  Liu  Wenjun  Liu  Di 《中国科学:生命科学英文版》2019,62(8):1101-1103
<正>Emerging and re-emerging infectious diseases have given rise to a large number of human infections, morbidity, and heavy economic burden, including the Middle East respiratory syndrome caused by a coronavirus in 2012, global influenza pandemic caused by the H7N9 influenza A virus in2013, Ebola epidemic in West Africa in 2014, and Lassa fever epidemic in Nigeria in 2019. The healthcare war against viruses deserves constant surveillance due to the continuous emergence of new viruses and rapid evolution of  相似文献   
298.
To identify muscle-related protein isoforms expressed in the white muscle of the mandarin fish Siniperca chuatsi, we analyzed 5,063 high-quality expressed sequence tags (ESTs) from white muscle cDNA library and predicted the integrity of the clusters annotated to these genes and the physiochemical properties of the putative polypeptides with full length. Up to about 33% of total ESTs were annotated to muscle-related proteins: myosin, actin, tropomyosin/troponin complex, parvalbumin, and Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCa). Thirty-two isoforms were identified and more than one isoform existed in each of these proteins. Among these isoforms, 14 putative polypeptides were with full length. In addition, about 2% of total ESTs were significantly homologous to “glue” molecules such as alpha-actinins, myosin-binding proteins, myomesin, tropomodulin, cofilin, profilin, twinfilins, coronin-1, and nebulin, which were required for the integrity and maintenance of the muscle sarcomere. The results demonstrated that multiple isoforms of major muscle-related proteins were expressed in S. chuatsi white muscle. The analysis on these isoforms and other proteins sequences will greatly aid our systematic understanding of the high flexibility of mandarin fish white muscle at molecular level and expand the utility of fish systems as models for the muscle genetic control and function.  相似文献   
299.
Sigma receptors are small membrane proteins implicated in a number of pathophysiological conditions, including drug addiction, psychosis, and cancer; thus, small molecule inhibitors of sigma receptors have been proposed as potential pharmacotherapeutics for these diseases. We previously discovered that endogenous monochain N-alkyl sphingolipids, including d-erythro-sphingosine, sphinganine, and N,N-dimethylsphingosine, bind to the sigma-1 receptor at physiologically relevant concentrations [Ramachandran, S., et al. (2009) Eur. J. Pharmacol. 609, 19-26]. Here, we investigated several N-alkylamines of varying chain lengths as sigma receptor ligands. Although the K(I) values for N-alkylamines were found to be in the micromolar range, when N-3-phenylpropyl and N-3-(4-nitrophenyl)propyl derivatives of butylamine (1a and 1b, respectively), heptylamine (2a and 2b, respectively), dodecylamine (3a and 3b, respectively), and octadecylamine (4a and 4b, respectively) were evaluated as sigma receptor ligands, we found that these compounds exhibited nanomolar affinities with both sigma-1 and sigma-2 receptors. A screen of high-affinity ligands 2a, 2b, 3a, and 3b against a variety of other receptors and/or transporters confirmed these four compounds to be highly selective mixed sigma-1 and sigma-2 ligands. Additionally, in HEK-293 cells reconstituted with K(v)1.4 potassium channel and the sigma-1 receptor, these derivatives were able to inhibit the outward current from the channel, consistent with sigma receptor modulation. Finally, cytotoxicity assays showed that 2a, 2b, 3a, and 3b were highly potent against a number of cancer cell lines, demonstrating their potential utility as mixed sigma-1 and sigma-2 receptor anticancer agents.  相似文献   
300.
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号